Skip to main content
Log in

Pulsed electromagnetic field therapy results in healing of full thickness articular cartilage defect

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

This study aimed to determine the efficacy of PEMF (pulsed electromagnetic field) treatment in experimental osteochondral defect healing in a rabbit model. The study was conducted on 12 New Zealand white rabbits. Six rabbits formed the study group and six rabbits the control group. The right knee joints of all 12 animals were exposed and a 3.5-mm diameter osteochondral defect was created in the trochlear groove. The defect was filled with calcium phosphate scaffold. Six animals from the study group were given PEMF of one hour duration once a day for six weeks with set parameters for frequency of 1 Hz, voltage 20 V, sine wave and current ±30 mA. At six weeks the animals were sacrificed and histological evaluation was done using H&E, Safranin O, Maissons trichrome staining and immunohistochemistry for type 2 collagen. The quality of the repair tissue was graded and compared between groups with the Wakitani histological grading scale and a statistical analysis was done. The total histological score was significantly better in the study group (p = 0.002) with regeneration similar to adjacent normal hyaline cartilage. Immunohistochemistry for collagen type II was positive in the study group. PEMF stimulation of osteochondral defects with calcium phosphate scaffold is effective in hyaline cartilage formation. PEMF is a non-invasive and cost effective adjuvant treatment with salvage procedures such as abrasion chondroplasty and subchondral drilling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 419:30–37

    Google Scholar 

  2. Aaron RK, Wang S, Ciombor DM (2002) Upregulation of basal TGFbeta1 levels by EMF coincident with chondrogenesis—implications for skeletal repair and tissue engineering. J Orthop Res 20:233–240. doi:10.1016/S0736-0266(01)00084-5

    Article  PubMed  CAS  Google Scholar 

  3. Al-Munajjed AA, O’Brien FJ (2009) Influence of a novel calcium-phosphate coating on the mechanical properties of highly porous collagen scaffolds for bone repair. J Mech Behav Biomed Mater 2:138–146

    Article  PubMed  Google Scholar 

  4. Benazzo F, Cadossi M, Cavani F, Fini M, Giavaresi G, Setti S, Cadossi R, Giardino R (2008) Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res 26:631–642. doi:10.1002/jor.20530

    Article  PubMed  Google Scholar 

  5. Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85:223–230

    Article  PubMed  CAS  Google Scholar 

  6. Boopalan P, Chittaranjan SB, Balamurugan R, Nandakumar N, Sabareeswaran A, Mohanty M (2009) Pulsed electromagnetic field (PEMF) treatment for fracture healing. Curr Orthop Practice 20:423–428

    Article  Google Scholar 

  7. Ciombor DM, Aaron RK, Wang S, Simon B (2003) Modification of osteoarthritis by pulsed electromagnetic field—a morphological study. Osteoarthr Cartil 11:455–462

    Article  PubMed  Google Scholar 

  8. Ciombor DM, Lester G, Aaron RK, Neame P, Caterson B (2002) Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res 20:40–50. doi:10.1016/S0736-0266(01)00071-7

    Article  PubMed  CAS  Google Scholar 

  9. De Mattei M, Caruso A, Pezzetti F, Pellati A, Stabellini G, Sollazzo V, Traina GC (2001) Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connect Tissue Res 42:269–279

    Article  PubMed  Google Scholar 

  10. Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26:3617–3629

    Article  PubMed  CAS  Google Scholar 

  11. Fini M, Giavaresi G, Torricelli P, Cavani F, Setti S, Cane V, Giardino R (2005) Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged Dunkin Hartley guinea pig. J Orthop Res 23:899–908

    Article  PubMed  CAS  Google Scholar 

  12. Fini M, Torricelli P, Giavaresi G, Aldini NN, Cavani F, Setti S, Nicolini A, Carpi A, Giardino R (2008) Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother 62:709–715

    Article  PubMed  Google Scholar 

  13. Hunziker EB, Driesang IM, Morris EA (2001) Chondrogenesis in cartilage repair is induced by members of the transforming growth factor-beta superfamily. Clin Orthop Relat Res 391Suppl:S171–S181

    Google Scholar 

  14. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89:2105–2112

    Article  PubMed  Google Scholar 

  15. Martel-Pelletier J (1999) Pathophysiology of osteoarthritis. Osteoarthr Cartil 7:371–373

    Article  PubMed  CAS  Google Scholar 

  16. Mastrogiacomo M, Cancedda R, Quarto R (2001) Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage 9 Suppl A:S36–S40

    Google Scholar 

  17. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26:433–441

    Article  PubMed  Google Scholar 

  18. Pecina M, Jelic M, Ivkovic A, Hudetz D (2006) Gene therapy applications in orthopaedics. Int Orthop 30:215–216. doi:10.1007/s00264-005-0047-x, author reply p 217

    Article  PubMed  Google Scholar 

  19. Pecina M, Jelic M, Martinovic S, Haspl M, Vukicevic S (2002) Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop 26:131–136. doi:10.1007/s00264-002-0338-4

    Article  PubMed  CAS  Google Scholar 

  20. Pecina M, Vukicevic S (2007) Biological aspects of bone, cartilage and tendon regeneration. Int Orthop 31:719–720. doi:10.1007/s00264-007-0425-7

    Article  PubMed  Google Scholar 

  21. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  22. Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12:2–19

    Article  PubMed  CAS  Google Scholar 

  23. Shangkai C, Naohide T, Koji Y, Yasuji H, Masaaki N, Tomohiro T, Yasushi T (2007) Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration. Tissue Eng 13:483–492

    Article  PubMed  CAS  Google Scholar 

  24. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75:532–553

    PubMed  CAS  Google Scholar 

  25. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76:579–592

    PubMed  CAS  Google Scholar 

  26. Wang Y, Ebeling PR, Hanna F, O’Sullivan R, Cicuttini FM (2005) Relationship between bone markers and knee cartilage volume in healthy men. J Rheumatol 32:2200–2204

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. J. V. C. Boopalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boopalan, P.R.J.V.C., Arumugam, S., Livingston, A. et al. Pulsed electromagnetic field therapy results in healing of full thickness articular cartilage defect. International Orthopaedics (SICOT) 35, 143–148 (2011). https://doi.org/10.1007/s00264-010-0994-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-010-0994-8

Keywords

Navigation