Skip to main content

Advertisement

Log in

Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b−/− PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b−/− mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included in the supplemental material. Additional data are available from the corresponding author on request. No data are deposited in databases.

References

  1. Ahmad F, Mein H, Jing Y, Zhang H, Liu P (2021) Behavioural functions and cerebral blood flow in a P301S tauopathy mouse model: a time-course study. Int J Mol Sci. https://doi.org/10.3390/ijms22189727

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alonso AD, Cohen LS, Corbo C, Morozova V, ElIdrissi A, Phillips G et al (2018) Hyperphosphorylation of Tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci 12:338. https://doi.org/10.3389/fncel.2018.00338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C et al (2019) Role of Tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci 11:204. https://doi.org/10.3389/fnagi.2019.00204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bejanin A, Schonhaut DR, La Joie R, Kramer JH, Baker SL, Sosa N et al (2017) Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140:3286–3300. https://doi.org/10.1093/brain/awx243

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bemiller SM, McCray TJ, Allan K, Formica SV, Xu G, Wilson G et al (2017) TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener 12:74. https://doi.org/10.1186/s13024-017-0216-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benear SL, Ngo CT, Olson IR (2020) Dissecting the fornix in basic memory processes and neuropsychiatric disease: a review. Brain Connect 10:331–354. https://doi.org/10.1089/brain.2020.0749

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berth SH, Lloyd TE (2023) Disruption of axonal transport in neurodegeneration. J Clin Invest. https://doi.org/10.1172/JCI168554

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19–31. https://doi.org/10.1016/j.neuron.2010.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bieniek KF, Ross OA, Cormier KA, Walton RL, Soto-Ortolaza A, Johnston AE et al (2015) Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathol 130:877–889. https://doi.org/10.1007/s00401-015-1502-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bolos M, Llorens-Martin M, Jurado-Arjona J, Hernandez F, Rabano A, Avila J (2016) Direct evidence of internalization of Tau by microglia in vitro and in vivo. J Alzheimers Dis 50:77–87. https://doi.org/10.3233/JAD-150704

    Article  CAS  PubMed  Google Scholar 

  11. Bomont P (2021) The dazzling rise of neurofilaments: physiological functions and roles as biomarkers. Curr Opin Cell Biol 68:181–191. https://doi.org/10.1016/j.ceb.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  12. Brady OA, Zheng Y, Murphy K, Huang M, Hu F (2013) The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet 22:685–695. https://doi.org/10.1093/hmg/dds475

    Article  CAS  PubMed  Google Scholar 

  13. Brandt R, Trushina NI, Bakota L (2020) Much more than a cytoskeletal protein: physiological and pathological functions of the non-microtubule binding region of Tau. Front Neurol 11:590059. https://doi.org/10.3389/fneur.2020.590059

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buscaglia G, Northington KR, Moore JK, Bates EA (2020) Reduced TUBA1A tubulin causes defects in trafficking and impaired adult motor behavior. eNeuro. https://doi.org/10.1523/ENEURO.0045-20.2020

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chang A, Xiang X, Wang J, Lee C, Arakhamia T, Simjanoska M et al (2022) Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 185:1346.e1315-1355.e1315. https://doi.org/10.1016/j.cell.2022.02.026

    Article  CAS  Google Scholar 

  16. Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicelli-Daley L et al (2012) TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci 32:11213–11227. https://doi.org/10.1523/JNEUROSCI.0521-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Y, Yu Y (2023) Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation. J Neuroinflamm 20:165. https://doi.org/10.1186/s12974-023-02853-3

    Article  Google Scholar 

  18. Cherry JD, Mez J, Crary JF, Tripodis Y, Alvarez VE, Mahar I et al (2018) Variation in TMEM106B in chronic traumatic encephalopathy. Acta Neuropathol Commun 6:115. https://doi.org/10.1186/s40478-018-0619-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Combs B, Mueller RL, Morfini G, Brady ST, Kanaan NM (2019) Tau and axonal transport misregulation in tauopathies. Adv Exp Med Biol 1184:81–95. https://doi.org/10.1007/978-981-32-9358-8_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Copley KE, Shorter J (2022) Flying under the radar: TMEM106B(120–254) fibrils break out in diverse neurodegenerative disorders. Cell 185:1290–1292. https://doi.org/10.1016/j.cell.2022.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cruchaga C, Graff C, Chiang HH, Wang J, Hinrichs AL, Spiegel N et al (2011) Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol 68:581–586. https://doi.org/10.1001/archneurol.2010.350

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deming Y, Cruchaga C (2014) TMEM106B: a strong FTLD disease modifier. Acta Neuropathol 127:419–422. https://doi.org/10.1007/s00401-014-1249-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dong DL, Xu ZS, Hart GW, Cleveland DW (1996) Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J Biol Chem 271:20845–20852. https://doi.org/10.1074/jbc.271.34.20845

    Article  CAS  PubMed  Google Scholar 

  24. Eshun-Wilson L, Zhang R, Portran D, Nachury MV, Toso DB, Lohr T et al (2019) Effects of alpha-tubulin acetylation on microtubule structure and stability. Proc Natl Acad Sci U S A 116:10366–10371. https://doi.org/10.1073/pnas.1900441116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn-Ng I et al (2019) ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv 5:eaax2705. https://doi.org/10.1126/sciadv.aax2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan Y, Zhao Q, Xia W, Tao Y, Yu W, Chen M et al (2022) Generic amyloid fibrillation of TMEM106B in patient with Parkinson’s disease dementia and normal elders. Cell Res 32:585–588. https://doi.org/10.1038/s41422-022-00665-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feng T, Lacrampe A, Hu F (2021) Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol 141:327–339. https://doi.org/10.1007/s00401-020-02246-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng T, Luan L, Katz II, Ullah M, Van Deerlin VM, Trojanowski JQ et al (2022) TMEM106B deficiency impairs cerebellar myelination and synaptic integrity with Purkinje cell loss. Acta Neuropathol Commun 10:33. https://doi.org/10.1186/s40478-022-01334-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng T, Mai S, Roscoe JM, Sheng RR, Ullah M, Zhang J et al (2020) Loss of TMEM106B and PGRN leads to severe lysosomal abnormalities and neurodegeneration in mice. EMBO Rep 21:e50219. https://doi.org/10.15252/embr.202050219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng T, Sheng RR, Sole-Domenech S, Ullah M, Zhou X, Mendoza CS et al (2020) A role of the frontotemporal lobar degeneration risk factor TMEM106B in myelination. Brain 143:2255–2271. https://doi.org/10.1093/brain/awaa154

    Article  PubMed  PubMed Central  Google Scholar 

  31. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M et al (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76:467–474. https://doi.org/10.1212/WNL.0b013e31820a0e3b

    Article  CAS  PubMed  Google Scholar 

  32. Gafson AR, Barthelemy NR, Bomont P, Carare RO, Durham HD, Julien JP et al (2020) Neurofilaments: neurobiological foundations for biomarker applications. Brain 143:1975–1998. https://doi.org/10.1093/brain/awaa098

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gallagher MD, Suh E, Grossman M, Elman L, McCluskey L, Van Swieten JC et al (2014) TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol 127:407–418. https://doi.org/10.1007/s00401-013-1239-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garcia-Revilla J, Boza-Serrano A, Espinosa-Oliva AM, Soto MS, Deierborg T, Ruiz R et al (2022) Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death Dis 13:628. https://doi.org/10.1038/s41419-022-05058-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of Tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210. https://doi.org/10.1146/annurev-neuro-072116-031153

    Article  CAS  PubMed  Google Scholar 

  36. Gratuze M, Chen Y, Parhizkar S, Jain N, Strickland MR, Serrano JR et al (2021) Activated microglia mitigate Abeta-associated tau seeding and spreading. J Exp Med. https://doi.org/10.1084/jem.20210542

    Article  PubMed  PubMed Central  Google Scholar 

  37. Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A 87:5827–5831. https://doi.org/10.1073/pnas.87.15.5827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. https://doi.org/10.1056/NEJMoa1211851

    Article  CAS  PubMed  Google Scholar 

  39. Guo W, Stoklund Dittlau K, Van Den Bosch L (2020) Axonal transport defects and neurodegeneration: molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 99:133–150. https://doi.org/10.1016/j.semcdb.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  40. Hempen B, Brion JP (1996) Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer’s disease. J Neuropathol Exp Neurol 55:964–972. https://doi.org/10.1097/00005072-199609000-00003

    Article  CAS  PubMed  Google Scholar 

  41. Jia J, Claude-Taupin A, Gu Y, Choi SW, Peters R, Bissa B et al (2020) Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev Cell 52(69–87):e68. https://doi.org/10.1016/j.devcel.2019.10.025

    Article  CAS  Google Scholar 

  42. Jiang S, Bhaskar K (2020) Degradation and transmission of Tau by autophagic-endolysosomal networks and potential therapeutic targets for tauopathy. Front Mol Neurosci 13:586731. https://doi.org/10.3389/fnmol.2020.586731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang YX, Cao Q, Sawaya MR, Abskharon R, Ge P, DeTure M et al (2022) Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature 605:304–309. https://doi.org/10.1038/s41586-022-04670-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klein ZA, Takahashi H, Ma M, Stagi M, Zhou M, Lam TT et al (2017) Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron 95:281.e286-296.e286. https://doi.org/10.1016/j.neuron.2017.06.026

    Article  CAS  Google Scholar 

  45. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163. https://doi.org/10.1016/j.cell.2007.10.035

    Article  CAS  PubMed  Google Scholar 

  46. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-Maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  CAS  PubMed  Google Scholar 

  47. Kundu ST, Grzeskowiak CL, Fradette JJ, Gibson LA, Rodriguez LB, Creighton CJ et al (2018) TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun 9:2731. https://doi.org/10.1038/s41467-018-05013-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lang CM, Fellerer K, Schwenk BM, Kuhn PH, Kremmer E, Edbauer D et al (2012) Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J Biol Chem 287:19355–19365. https://doi.org/10.1074/jbc.M112.365098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lattante S, Le Ber I, Galimberti D, Serpente M, Rivaud-Pechoux S, Camuzat A et al (2014) Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Neurobiol Aging 35:2658.e2651-2658.e2655. https://doi.org/10.1016/j.neurobiolaging.2014.06.023

    Article  CAS  Google Scholar 

  50. Lee MJ, Lee JH, Rubinsztein DC (2013) Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 105:49–59. https://doi.org/10.1016/j.pneurobio.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  51. Leyns CEG, Gratuze M, Narasimhan S, Jain N, Koscal LJ, Jiang H et al (2019) TREM2 function impedes tau seeding in neuritic plaques. Nat Neurosci 22:1217–1222. https://doi.org/10.1038/s41593-019-0433-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li ZH, Lu J, Tay SS, Wu YJ, Strong MJ, He BP (2006) Mice with targeted disruption of neurofilament light subunit display formation of protein aggregation in motoneurons and downregulation of complement receptor type 3 alpha subunit in microglia in the spinal cord at their earlier age: a possible feature in pre-clinical development of neurodegenerative diseases. Brain Res 1113:200–209. https://doi.org/10.1016/j.brainres.2006.07.041

    Article  CAS  PubMed  Google Scholar 

  53. Lim F, Hernandez F, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J (2001) FTDP-17 mutations in Tau transgenic mice provoke lysosomal abnormalities and Tau filaments in forebrain. Mol Cell Neurosci 18:702–714. https://doi.org/10.1006/mcne.2001.1051

    Article  CAS  PubMed  Google Scholar 

  54. Llibre-Guerra JJ, Lee SE, Suemoto CK, Ehrenberg AJ, Kovacs GG, Karydas A et al (2021) A novel temporal-predominant neuro-astroglial tauopathy associated with TMEM106B gene polymorphism in FTLD/ALS-TDP. Brain Pathol 31:267–282. https://doi.org/10.1111/bpa.12924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luningschror P, Werner G, Stroobants S, Kakuta S, Dombert B, Sinske D et al (2020) The FTLD risk factor TMEM106B regulates the transport of lysosomes at the axon initial segment of motoneurons. Cell Rep 30:3506.e3506-3519.e3506. https://doi.org/10.1016/j.celrep.2020.02.060

    Article  CAS  Google Scholar 

  56. Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul SM (2015) Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep 5:11161. https://doi.org/10.1038/srep11161

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247. https://doi.org/10.1101/cshperspect.a006247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mao F, Robinson JL, Unger T, Posavi M, Amado DA, Elman L et al (2021) TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy. Acta Neuropathol 142:629–642. https://doi.org/10.1007/s00401-021-02330-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM et al (2015) Reactive microglia drive tau pathology and contribute to the spreading of pathological Tau in the brain. Brain 138:1738–1755. https://doi.org/10.1093/brain/awv081

    Article  PubMed  PubMed Central  Google Scholar 

  60. McLean JR, Sanelli TR, Leystra-Lantz C, He BP, Strong MJ (2005) Temporal profiles of neuronal degeneration, glial proliferation, and cell death in hNFL(+/+) and NFL(-/-) mice. Glia 52:59–69. https://doi.org/10.1002/glia.20218

    Article  PubMed  Google Scholar 

  61. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A et al (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034. https://doi.org/10.1016/j.neuron.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  62. Morales I, Jimenez JM, Mancilla M, Maccioni RB (2013) Tau oligomers and fibrils induce activation of microglial cells. J Alzheimers Dis 37:849–856. https://doi.org/10.3233/JAD-131843

    Article  CAS  PubMed  Google Scholar 

  63. Muzio L, Viotti A, Martino G (2021) Microglia in neuroinflammation and neurodegeneration: from understanding to therapy. Front Neurosci 15:742065. https://doi.org/10.3389/fnins.2021.742065

    Article  PubMed  PubMed Central  Google Scholar 

  64. Napolitano G, Ballabio A (2016) TFEB at a glance. J Cell Sci 129:2475–2481. https://doi.org/10.1242/jcs.146365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K et al (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142:1503–1527. https://doi.org/10.1093/brain/awz099

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nelson PT, Wang WX, Partch AB, Monsell SE, Valladares O, Ellingson SR et al (2015) Reassessment of risk genotypes (GRN, TMEM106B, and ABCC9 variants) associated with hippocampal sclerosis of aging pathology. J Neuropathol Exp Neurol 74:75–84. https://doi.org/10.1097/NEN.0000000000000151

    Article  CAS  PubMed  Google Scholar 

  67. Neumann B, Hilliard MA (2014) Loss of MEC-17 leads to microtubule instability and axonal degeneration. Cell Rep 6:93–103. https://doi.org/10.1016/j.celrep.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  68. Nixon RA, Cataldo AM, Mathews PM (2000) The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res 25:1161–1172. https://doi.org/10.1023/a:1007675508413

    Article  CAS  PubMed  Google Scholar 

  69. Ono M, Komatsu M, Ji B, Takado Y, Shimojo M, Minamihisamatsu T et al (2022) Central role for p62/SQSTM1 in the elimination of toxic tau species in a mouse model of tauopathy. Aging Cell 21:e13615. https://doi.org/10.1111/acel.13615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145. https://doi.org/10.1074/jbc.M702824200

    Article  CAS  PubMed  Google Scholar 

  71. Perneel J, Neumann M, Heeman B, Cheung S, Van den Broeck M, Wynants S et al (2023) Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging. Acta Neuropathol 145:285–302. https://doi.org/10.1007/s00401-022-02531-3

    Article  CAS  PubMed  Google Scholar 

  72. Perneel J, Rademakers R (2022) Identification of TMEM106B amyloid fibrils provides an updated view of TMEM106B biology in health and disease. Acta Neuropathol 144:807–819. https://doi.org/10.1007/s00401-022-02486-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Piras A, Collin L, Gruninger F, Graff C, Ronnback A (2016) Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun 4:22. https://doi.org/10.1186/s40478-016-0292-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Portier MM (1992) Neuronal cytoskeleton: structural, functional and dynamic aspects. Rev Neurol (Paris) 148:1–19

    CAS  PubMed  Google Scholar 

  75. Portran D, Schaedel L, Xu Z, Thery M, Nachury MV (2017) Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol 19:391–398. https://doi.org/10.1038/ncb3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Prinz M, Masuda T, Wheeler MA, Quintana FJ (2021) Microglia and central nervous system-associated macrophages-from origin to disease modulation. Annu Rev Immunol 39:251–277. https://doi.org/10.1146/annurev-immunol-093019-110159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH (2022) Phosphorylated Tau in Alzheimer’s disease and other tauopathies. Int J Mol Sci. https://doi.org/10.3390/ijms232112841

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rhinn H, Abeliovich A (2017) Differential aging analysis in human cerebral cortex identifies variants in TMEM106B and GRN that regulate aging phenotypes. Cell Syst 4:404.e405-415.e405. https://doi.org/10.1016/j.cels.2017.02.009

    Article  CAS  Google Scholar 

  79. Rutherford NJ, Carrasquillo MM, Li M, Bisceglio G, Menke J, Josephs KA et al (2012) TMEM106B risk variant is implicated in the pathologic presentation of Alzheimer disease. Neurology 79:717–718. https://doi.org/10.1212/WNL.0b013e318264e3ac

    Article  PubMed  PubMed Central  Google Scholar 

  80. Samudra N, Lane-Donovan C, VandeVrede L, Boxer AL (2023) Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest. https://doi.org/10.1172/JCI168553

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schweighauser M, Arseni D, Bacioglu M, Huang M, Lovestam S, Shi Y et al (2022) Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 605:310–314. https://doi.org/10.1038/s41586-022-04650-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schwenk BM, Lang CM, Hogl S, Tahirovic S, Orozco D, Rentzsch K et al (2014) The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO J 33:450–467. https://doi.org/10.1002/embj.201385857

    Article  CAS  PubMed  Google Scholar 

  83. Sferra A, Nicita F, Bertini E (2020) Microtubule dysfunction: a common feature of neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms21197354

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313:2098–2109. https://doi.org/10.1016/j.yexcr.2007.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Simons C, Dyment D, Bent SJ, Crawford J, D’Hooghe M, Kohlschutter A et al (2017) A recurrent de novo mutation in TMEM106B causes hypomyelinating leukodystrophy. Brain 140:3105–3111. https://doi.org/10.1093/brain/awx314

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stagi M, Klein ZA, Gould TJ, Bewersdorf J, Strittmatter SM (2014) Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci 61:226–240. https://doi.org/10.1016/j.mcn.2014.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stanley JL, Lincoln RJ, Brown TA, McDonald LM, Dawson GR, Reynolds DS (2005) The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. J Psychopharmacol 19:221–227. https://doi.org/10.1177/0269881105051524

    Article  CAS  PubMed  Google Scholar 

  88. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y et al (2020) The behavioural and neuropathologic sexual dimorphism and absence of MIP-3alpha in tau P301S mouse model of Alzheimer’s disease. J Neuroinflamm 17:72. https://doi.org/10.1186/s12974-020-01749-w

    Article  CAS  Google Scholar 

  89. Tropea TF, Mak J, Guo MH, Xie SX, Suh E, Rick J et al (2019) TMEM106B Effect on cognition in Parkinson disease and frontotemporal dementia. Ann Neurol 85:801–811. https://doi.org/10.1002/ana.25486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Blitterswijk M, Mullen B, Nicholson AM, Bieniek KF, Heckman MG, Baker MC et al (2014) TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol 127:397–406. https://doi.org/10.1007/s00401-013-1240-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42:234–239. https://doi.org/10.1038/ng.536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van der Zee J, Van Langenhove T, Kleinberger G, Sleegers K, Engelborghs S, Vandenberghe R et al (2011) TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain 134:808–815. https://doi.org/10.1093/brain/awr007

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vass R, Ashbridge E, Geser F, Hu WT, Grossman M, Clay-Falcone D et al (2011) Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathol 121:373–380. https://doi.org/10.1007/s00401-010-0782-y

    Article  PubMed  Google Scholar 

  94. Wagner OI, Ascano J, Tokito M, Leterrier JF, Janmey PA, Holzbaur EL (2004) The interaction of neurofilaments with the microtubule motor cytoplasmic dynein. Mol Biol Cell 15:5092–5100. https://doi.org/10.1091/mbc.e04-05-0401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Y, Mandelkow E (2012) Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans 40:644–652. https://doi.org/10.1042/BST20120071

    Article  CAS  PubMed  Google Scholar 

  96. Wes PD, Easton A, Corradi J, Barten DM, Devidze N, DeCarr LB et al (2014) Tau overexpression impacts a neuroinflammation gene expression network perturbed in Alzheimer’s disease. PLoS ONE 9:e106050. https://doi.org/10.1371/journal.pone.0106050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu Z, Cork LC, Griffin JW, Cleveland DW (1993) Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73:23–33. https://doi.org/10.1016/0092-8674(93)90157-l

    Article  CAS  PubMed  Google Scholar 

  98. Yan H, Kubisiak T, Ji H, Xiao J, Wang J, Burmeister M (2018) The recurrent mutation in TMEM106B also causes hypomyelinating leukodystrophy in China and is a CpG hot spot. Brain. https://doi.org/10.1093/brain/awy029

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351. https://doi.org/10.1016/j.neuron.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  100. Yu L, De Jager PL, Yang J, Trojanowski JQ, Bennett DA, Schneider JA (2015) The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology 84:927–934. https://doi.org/10.1212/WNL.0000000000001313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yuan A, Nixon RA (2021) Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies. Front Neurosci 15:689938. https://doi.org/10.3389/fnins.2021.689938

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yuan A, Rao MV, Veeranna, Nixon RA (2017) Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a018309

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang L, Sheng R, Qin Z (2009) The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai) 41:437–445. https://doi.org/10.1093/abbs/gmp031

    Article  CAS  PubMed  Google Scholar 

  104. Zhang T, Pang W, Feng T, Guo J, Wu K, Nunez Santos M et al (2023) TMEM106B regulates microglial proliferation and survival in response to demyelination. Sci Adv 9:eadd2676. https://doi.org/10.1126/sciadv.add2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhu B, Liu Y, Hwang S, Archuleta K, Huang H, Campos A et al (2022) Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Mol Neurodegener 17:58. https://doi.org/10.1186/s13024-022-00562-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Xiaochun Wu for technical assistance, Dr. Tony Bretscher’s lab for assistance with the confocal microscope and Dr. Chris Schaffer and Dr. Nozomi Nishimura’s group for help with behavioral tests. We also thank the late Professor Chad Dickey (University of South Florida) for providing DyLight 488-Tau P301L oligomer. This work is supported by NINDS/NIA (R01NS088448 & R01NS095954) to F.H.

Funding

National Institute of Neurological Disorders and Stroke, R01NS088448, Fenghua Hu, R01NS095954, Fenghua Hu.

Author information

Authors and Affiliations

Authors

Contributions

T.F. characterized all the phenotypes, analyzed the data, and drafted the manuscript. H.D. and T.F. bred the mice. C.Y. and Y.W. performed behavioral tests. F.H. supervised the project and edited the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Fenghua Hu.

Ethics declarations

Conflict of interest

F.H. serves as a member of SAB of Muna Therapeutics and a consultant for Alector, Guidepoint, and GLG. Other authors have no competing interests.

Ethical approval and consent to participate

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The work under animal protocol 2017-0056 is approved by the Institutional Animal Care and Use Committee at Cornell University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3019 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Du, H., Yang, C. et al. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. Acta Neuropathol 147, 62 (2024). https://doi.org/10.1007/s00401-024-02702-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00401-024-02702-4

Keywords

Navigation