Skip to main content

Advertisement

Log in

TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by TDP-43 inclusions in the cortical and spinal motor neurons. It remains unknown whether and how pathogenic TDP-43 spreads across neural connections to progress degenerative processes in the cortico-spinal motor circuitry. Here we established novel mouse ALS models that initially induced mutant TDP-43 inclusions in specific neuronal or cell types in the motor circuits, and investigated whether TDP-43 and relevant pathological processes spread across neuronal or cellular connections. We first developed ALS models that primarily induced TDP-43 inclusions in the corticospinal neurons, spinal motor neurons, or forelimb skeletal muscle, by using adeno-associated virus (AAV) expressing mutant TDP-43. We found that TDP-43 induced in the corticospinal neurons was transported along the axons anterogradely and transferred to the oligodendrocytes along the corticospinal tract (CST), coinciding with mild axon degeneration. In contrast, TDP-43 introduced in the spinal motor neurons did not spread retrogradely to the cortical or spinal neurons; however, it induced an extreme loss of spinal motor neurons and subsequent degeneration of neighboring spinal neurons, suggesting a degenerative propagation in a retrograde manner in the spinal cord. The intraspinal degeneration further led to severe muscle atrophy. Finally, TDP-43 induced in the skeletal muscle did not propagate pathological events to spinal neurons retrogradely. Our data revealed that mutant TDP-43 spread across neuro-glial connections anterogradely in the corticospinal pathway, whereas it exhibited different retrograde degenerative properties in the spinal circuits. This suggests that pathogenic TDP-43 may induce distinct antero- and retrograde mechanisms of degeneration in the motor system in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data of this study are provided in the paper and Supplementary Information. Other information on the data is available from the corresponding author upon reasonable request.

References

  1. Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS et al (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81:536–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alaynick WA, Jessell TM, Pfaff SL (2011) SnapShot: spinal cord development. Cell 146:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  CAS  PubMed  Google Scholar 

  4. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221

    Article  CAS  PubMed  Google Scholar 

  5. Arnold ES, Ling S-C, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D et al (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA 110:E736–E745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asakawa K, Handa H, Kawakami K (2020) Optogenetic modulation of TDP-43 oligomerization accelerates ALS-related pathologies in the spinal motor neurons. Nature Commun 11:1004

    Article  CAS  Google Scholar 

  7. Auguste YS, Ferro A, Kahng JA, Xavier AM, Dixon JR, Vrudhula U et al (2022) Oligodendrocyte precursor cells engulf synapses during circuit remodeling in mice. Nat Neurosci 25:1273–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braak H, Ludolph A, Thal DR, Del Tredici K (2010) Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol 120:67–74

    Article  CAS  PubMed  Google Scholar 

  10. Braak H, Ludolph AC, Neumann M, Ravits J, Del Tredici K (2017) Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 133:79–90

    Article  CAS  PubMed  Google Scholar 

  11. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buchanan J, Elabbady L, Collman F, Jorstad NL, Bakken TE, Ott C et al (2022) Oligodendrocyte precursor cells ingest axons in the mouse neocortex. Proc Natl Acad Sci USA 119:e2202580119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM-Y, Hatanpaa KJ et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dickson DW, Josephs KA, Amador-Ortiz C (2007) TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol 114:71–79

    Article  CAS  PubMed  Google Scholar 

  15. Ding X, Xiang Z, Qin C, Chen Y, Tian H, Meng L et al (2021) Spreading of TDP-43 pathology via pyramidal tract induces ALS-like phenotypes in TDP-43 transgenic mice. Acta Neuropathol Commun 9:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dols-Icardo O, Montal V, Sirisi S, López-Pernas G, Cervera-Carles L, Querol-Vilaseca M et al (2020) Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 7:e829

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eisen A, Weber M (2001) The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 24:564–573

    Article  CAS  PubMed  Google Scholar 

  18. Fallini C, Bassell GJ, Rossoll W (2012) The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Human Mol Gen 21:3703–3718

    Article  CAS  Google Scholar 

  19. Fatima M, Tan R, Halliday GM, Kril JJ (2015) Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. Acta Neuropathol Commun 3:47

    Article  PubMed  PubMed Central  Google Scholar 

  20. Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM et al (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211:897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geser F, Stein B, Partain M, Elman LB, McCluskey LF, Xie SX et al (2011) Motor neuron disease clinically limited to the lower motor neuron is a diffuse TDP-43 proteinopathy. Acta Neuropathol 121:509–517

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D et al (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63:535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT et al (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  CAS  PubMed  Google Scholar 

  24. Gromicho M, Figueiral M, Uysal H, Grosskreutz J, Kuzma-Kozakiewicz M et al (2020) Spreading in ALS: the relative impact of upper and lower motor neuron involvement. Ann Clin Transl Neurol 7:1181–1192

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gu Z, Kalambogias J, Yoshioka S, Han W, Li Z, Kawasawa YI et al (2017) Control of species-dependent cortico-motoneuronal connections underlying manual dexterity. Science 357:400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hock EM, Polymenidou M (2016) Prion-like propagation as a pathogenic principle in frontotemporal dementia. J Neurochem 138:163–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Igaz LM, Kwong LK, Lee EB, Chen-Plotkin A, Swanson E, Unger T et al (2011) Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Investig 121:726–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iguchi Y, Eid L, Parent M, Soucy G, Bareil C, Riku Y et al (2016) Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139:3187–3201

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ishii T, Kawakami E, Endo K, Misawa H, Watabe K (2017) Formation and spreading of TDP-43 aggregates in cultured neuronal and glial cells demonstrated by time-lapse imaging. PLoS ONE 12:e0179375

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ke YD, van Hummel A, Stevens CH, Gladbach A, Ippati S, Bi M et al (2015) Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS. Acta Neuropathol 130:661–678

    Article  CAS  PubMed  Google Scholar 

  32. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  33. Koyama A, Sugai A, Kato T, Ishihara T, Shiga A, Toyoshima Y et al (2016) Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. Nucleic Acids Res 44:5820–5836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee EB, Lee VM-Y, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50

    Article  CAS  Google Scholar 

  35. Lemon R (2019) Recent advances in our understanding of the primate corticospinal system. F1000Res 8:274

    Article  Google Scholar 

  36. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mori F, Tada M, Kon T, Miki Y, Tanji K, Kurotaki H et al (2019) Phosphorylated TDP-43 aggregates in skeletal and cardiac muscle are a marker of myogenic degeneration in amyotrophic lateral sclerosis and various conditions. Acta Neuropathol Commun 7:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mori F, Tanji K, Zhang H-X, Nishihira Y, Tan C-F, Takahashi H et al (2008) Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 116:193–203

    Article  CAS  PubMed  Google Scholar 

  39. Morrison BM, Hof PR, Morrison JH (1998) Determinants of neuronal vulnerability in neurodegenerative diseases. Ann Neurol 44:S32–S44

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura Y, Ueno M, Niehaus JK, Lang RA, Zheng Y, Yoshida Y (2021) Modulation of both intrinsic and extrinsic factors additively promotes rewiring of corticospinal circuits after spinal cord injury. J Neurosci 41:10247–10260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM-Y (2007) TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol 64:1388–1394

    Article  PubMed  Google Scholar 

  43. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  44. Nishihira Y, Tan C-F, Onodera O, Toyoshima Y, Yamada M, Morita T et al (2008) Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol 116:169–182

    Article  CAS  PubMed  Google Scholar 

  45. Nolan M, Scott C, Gamarallage MP, Lunn D, Carpenter K, McDonough E et al (2020) Quantitative patterns of motor cortex proteinopathy across ALS genotypes. Acta Neuropathol Commun 8:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T et al (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4:124–134

    Article  CAS  PubMed  Google Scholar 

  47. Okamoto K, Hirai S, Shoji M, Senoh Y, Yamazaki T (1990) Axonal swellings in the corticospinal tracts in amyotrophic lateral sclerosis. Acta Neuropathol 80:222–226

    Article  CAS  PubMed  Google Scholar 

  48. Oyanagi K, Ikuta F, Horikawa Y (1989) Evidence for sequential degeneration of the neurons in the intermediate zone of the spinal cord in amyotrophic lateral sclerosis: a topographic and quantitative investigation. Acta Neuropathol 77:343–349

    Article  CAS  PubMed  Google Scholar 

  49. Paxions G, Franklin K (2001) The mouse brain in stereotaxic coordinates. Academic Express, San Diego

    Google Scholar 

  50. Payne SC, Bartlett CA, Savigni DL, Harvey AR, Dunlop SA, Fitzgerald M (2013) Early proliferation does not prevent the loss of oligodendrocyte progenitor cells during the chronic phase of secondary degeneration in a CNS white matter tract. PLoS ONE 8:e65710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peled S, Sade D, Bram Y, Porat Z, Kreiser T, Mimouni M et al (2017) Single cell imaging and quantification of TDP-43 and α-synuclein intercellular propagation. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  52. Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Porta S, Xu Y, Restrepo CR, Kwong LK, Zhang B, Brown HJ et al (2018) Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat Commun 9:4220

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ravits J, Laurie P, Fan Y, Moore DH (2007) Implications of ALS focality: rostral–caudal distribution of lower motor neuron loss postmortem. Neurology 68:1576–1582

    Article  PubMed  Google Scholar 

  55. Ravits J, Paul P, Jorg C (2007) Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68:1571–1575

    Article  PubMed  Google Scholar 

  56. Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811

    Article  PubMed  PubMed Central  Google Scholar 

  57. Riku Y (2020) Reappraisal of the anatomical spreading and propagation hypothesis about TDP-43 aggregation in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neuropathology 40:426–435

    Article  CAS  PubMed  Google Scholar 

  58. Scotter EL, Chen H-J, Shaw CE (2015) TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12:352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shodai A, Morimura T, Ido A, Uchida T, Ayaki T, Takahashi R et al (2013) Aberrant assembly of RNA recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 288:14886–14905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smethurst P, Newcombe J, Troakes C, Simone R, Chen Y-R et al (2016) In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol Dis 96:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stephens B, Guiloff RJ, Navarrete R, Newman P, Nikhar N, Lewis P (2006) Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J Neurol Sci 244:41–58

    Article  PubMed  Google Scholar 

  63. Sugai A, Kato T, Koyama A, Koike Y, Konno T, Ishihara T et al (2019) Non-genetically modified models exhibit TARDBP mRNA increase due to perturbed TDP-43 autoregulation. Neurobiol Dis 130:104534

    Article  CAS  PubMed  Google Scholar 

  64. Svahn AJ, Don EK, Badrock AP, Cole NJ, Graeber MB, Yerbury JJ et al (2018) Nucleo-cytoplasmic transport of TDP-43 studied in real time: impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons. Acta Neuropathol 136:445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tanji K, Zhang HX, Mori F, Kakita A, Takahashi H, Wakabayashi K (2012) p62/sequestosome 1 binds to TDP-43 in brains with frontotemporal lobar degeneration with TDP-43 inclusions. J Neurosci Res 90:2034–2042

    Article  CAS  PubMed  Google Scholar 

  66. Tawara N, Yamashita S, Kawakami K, Kurashige T, Zhang Z et al (2018) Muscle-dominant wild-type TDP-43 expression induces myopathological changes featuring tubular aggregates and TDP-43-positive inclusions. Exp Neurol 309:169–180

    Article  CAS  PubMed  Google Scholar 

  67. Uchida A, Sasaguri H, Kimura N, Tajiri M, Ohkubo T, Ono F et al (2012) Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain 135:833–846

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ueno M, Nakamura Y, Li J, Gu Z, Niehaus J, Maezawa M et al (2018) Corticospinal circuits from the sensory and motor cortices differentially regulate skilled movements through distinct spinal interneurons. Cell Rep 23:1286–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Walker AK, Spiller KJ, Ge G, Zheng A, Xu Y, Zhou M et al (2015) Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol 130:643–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Watts RJ, Schuldiner O, Perrino J, Larsen C, Luo L (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14:678–684

    Article  CAS  PubMed  Google Scholar 

  72. Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR et al (2008) Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci USA 105:7594–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang J, Cheng X, Shen J, Xie B, Zhao X, Zhang Z et al (2016) A novel approach for amplification and purification of mouse oligodendrocyte progenitor cells. Front Cell Neurosci 10:203

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yokoseki A, Shiga A, Tan CF, Tagawa A, Kaneko H, Koyama A et al (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542

    Article  CAS  PubMed  Google Scholar 

  75. Zeineddine R, Whiten DR, Farrawell NE, McAlary L, Hanspal MA, Kumita JR et al (2017) Flow cytometric measurement of the cellular propagation of TDP-43 aggregation. Prion 11:195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang R, Chen Y, Wang X, Tian H, Liu H, Xiang Z et al (2021) Spreading of pathological TDP-43 along corticospinal tract axons induces ALS-like phenotypes in Atg5(+/-) mice. Int J Biol Sci 17:390–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Porta and V. Lee (University of Pennsylvania) for mouse-specific TDP-43 antibodies; M. Tada and A. Kakita (Niigata University) for their thoughtful comments on human pathology; S. Shibata (Niigata University) for suggestions in electron microscopic analyses; Y. Yoshida (Burke Neurological Institute) for approving use of mouse lines; K. Hoshina (Niigata University) and other lab members for their technical assistance; T. Yamashita (Osaka University) and K. Shibuki (Niigata University) for supporting materials. This work was supported by Tsubaki Neurology grant and JSPS KAKENHI (22K15637) (S.T.); AMED-CREST (JP19gm1210005), Moonshot Research (J21zf0127004), JSPS KAKENHI (21H02590B), ALS Foundation (Japan ALS Association) (M.U.); JSPS KAKENHI (19H01043) (O.O.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Osamu Onodera or Masaki Ueno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5138 kb)

Supplementary file2 Supplementary Movie 1. Severe forelimb paralysis at 8 weeks after AAV-CAG-DIO-Myc-mtTDP-43 injection in the spinal cord of Chat-Cre mice. (MOV 14317 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuboguchi, S., Nakamura, Y., Ishihara, T. et al. TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models. Acta Neuropathol 146, 611–629 (2023). https://doi.org/10.1007/s00401-023-02615-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-023-02615-8

Keywords

Navigation