Skip to main content

Advertisement

Log in

Dystrophic neurites of senile plaques in Alzheimer’s disease are deficient in cytochrome c oxidase

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Double-labeling immunofluorescence and confocal microscopy have been used to learn about the local relationship between amyloid, mitochondria, and cytochrome c oxidase (COX) in dystrophic neurites of senile plaques in the frontal cortex in Alzheimer's disease (AD). Dystrophic neurites surrounding amyloid plaques are filled with mitochondrial porin-immunoreactive structures. In contrast with tangle-bearing and non-tangle-bearing neurons, which express mitochondrial porin and COX subunit 4, porin-immunoreactive neurites of senile plaques lack COX subunit 4. Parallel western blot studies in mitochondria-enriched fractions of the frontal cortex in the same cases disclosed reduced expression levels of COX, but not of prohibitin, in AD stages VB/C of Braak. Co-localization of porin and lysosomal associated protein 1, as revealed by double-labeling immunofluorescence and confocal microscopy, suggests that mitochondria may be engulfed by lysosomes in dystrophic neurites. These findings support a local link between amyloid deposition, abnormal mitochondria and impaired respiratory chain function (resulting from decrease of COX expression) in dystrophic neurites of senile plaques in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54

    Article  PubMed  CAS  Google Scholar 

  2. Barrachina M, Maes T, Buesa C, Ferrer I (2006) Up-regulation of lysosome associated-membrane protein 1 (Lamp-1) in Alzheimer’s disease. Neuropathol Appl Neurobiol 32:505–516

    Article  PubMed  CAS  Google Scholar 

  3. Braak H, Braak E, Peter J, Morrison JH (1999) Temporal sequence of Alzheimer’s disease related pathology. In: Peters A, Morrison JH (eds) Cerebral cortex, vol 14, neurodegenerative and age-related changes in structure and function of cerebral cortex. Kluwer Academic/Plenum Publishers, Dordrecht, pp 475–512

    Google Scholar 

  4. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  Google Scholar 

  5. Brion JP, Couck AM, Bruce M, Anderton B, Flament-Durand J (1991) Synaptophysin and chromogranin a immunoreactivities in seniole plaques of Alzheimer’s disease. Brain Res 539:143–150

    Article  PubMed  CAS  Google Scholar 

  6. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50

    Article  PubMed  CAS  Google Scholar 

  7. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 80:91–100

    Article  PubMed  CAS  Google Scholar 

  8. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    PubMed  CAS  Google Scholar 

  9. Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A, Cash AD, Obrenovich ME, Perry G, Smith MA (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360

    Article  PubMed  CAS  Google Scholar 

  10. Cataldo AM, Paskevich PA, Kominami E, Nixon RA (1991) Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc Natl Acad Sci USA 88:10998–11002

    Article  PubMed  CAS  Google Scholar 

  11. Cataldo AM, Barnett JL, Berman SA, Li J, Quarless S, Bursztajn S, Lippa, Nixon RA (1995) Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671–680

    Article  PubMed  CAS  Google Scholar 

  12. Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, Curtain CC, Cherny RA, Cappai R, Dyrks T, Masters CL, Trounce IA (2005) Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1–42. J Neurosci 25:672–679

    Article  PubMed  CAS  Google Scholar 

  13. Duyckaerts C, Dickson DW (2003) Neuropathology of Alzheimer’s disease. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 47–68

    Google Scholar 

  14. Ferrer I, E Martí A Tortosa J Blasi (1998) Dystrophic neurites of senile plaques are defective in proteins involved in exocytosis and neurotransmission. J Neuropathol Exp Neurol 57:218–225

    Article  PubMed  CAS  Google Scholar 

  15. Fiala JC (2007) Mechanisms of amyloid plaque pathogenesis. Acta Neuropathol 114:551–571

    Article  PubMed  Google Scholar 

  16. Fiala JC, Feinberg M, Peters A, Barbas H (2007) Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct Funct 212:195–207

    Article  PubMed  Google Scholar 

  17. Gillardon F, Rist W, Kussmaul L, Vogel J, Berg M, Danzer K, Kraut N, Hengerer B (2007) Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics 7:605–616

    Article  PubMed  CAS  Google Scholar 

  18. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660

    Article  PubMed  CAS  Google Scholar 

  19. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    PubMed  CAS  Google Scholar 

  20. Horie H, Takenaka T, Kaiho M (1983) Effects of disruption of microtubules on translocation of particles and morphology in tissue cultured neurites. Brain Res 288:85–93

    Article  PubMed  CAS  Google Scholar 

  21. Kidd M (1964) Alzheimer’s disease: an electron microscopical study. Brain 87:307–320

    Article  PubMed  CAS  Google Scholar 

  22. Kim HS, Lee JH, Lee JP, Kim EM, Chang KA, Park CH, Jeong SJ, Wittendorp MC, Seo JH, Choi SH, Suh YH (2002) Amyloid beta peptide induces cytochrome C release from isolated mitochondria. NeuroReport 13:1989–1993

    Article  PubMed  CAS  Google Scholar 

  23. Kish SJ, Bergeron C, Rajput A, Dozic S, Mastrogiacomo F, Chang LJ, Wilson JM, DiStefano LM, Nobrega JN (1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59:776–779

    Article  PubMed  CAS  Google Scholar 

  24. Luse SA, Smith KR Jr (1964) The ultrastructure of senile plaques. Am J Pathol 44:553–563

    PubMed  CAS  Google Scholar 

  25. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    Article  PubMed  CAS  Google Scholar 

  26. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy H (2006) Mitochondria are a direct site of accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    Article  PubMed  CAS  Google Scholar 

  27. Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G (2007) Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol 66:525–532

    Article  PubMed  CAS  Google Scholar 

  28. Muñoz D (1991) Chromogranin A-like immunoreactive neurites are major constituents of senile plaques. Lab Invest 1991 64:826–832

    Google Scholar 

  29. Mutisya EM, Bowling AC, Beal MF (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem 63:2179–2184

    Article  PubMed  CAS  Google Scholar 

  30. Nixon RA, Cataldo AM, Mathews PM (2000) The endosomal–lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res 9–10:1161–1172

    Article  Google Scholar 

  31. Onyango I, Khan S, Miller B, Swerdlow R, Trimmer P, Bennett P (2006) Mitochondrial genomic contribution to mitochondrial dysfunction in Alzheimer’s disease. J Alzheimers Dis 9:183–193

    PubMed  Google Scholar 

  32. Pamplona R, Dalfó E, Ayala V, Bellmunt J, Prat J, Ferrer I, Portero M (2005) Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem 280:21522–21530

    Article  PubMed  CAS  Google Scholar 

  33. Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068

    Article  PubMed  CAS  Google Scholar 

  34. Terry RD, Gonatas NK, Weiss M (1964) Ultrastuctural studies in Alzheimer’s presenile dementia. Am J Pathol 44:269–297

    PubMed  CAS  Google Scholar 

  35. Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol 84:513–530

    Article  PubMed  CAS  Google Scholar 

  36. Wang J, Xiong S, Xie C, Marbesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962

    Article  PubMed  CAS  Google Scholar 

  37. Wang X, Su B, Perry G, Smith MA, Zhu X (2007) Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer’s disease. Free Radic Biol Med 43:1569–1573

    Article  PubMed  CAS  Google Scholar 

  38. Zhu X, Perry G, Moreira PI, Aliev G, Cash AD, Hirai K, Smith MA (2006) Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimer’s Dis 9:147–153

    Google Scholar 

  39. Zhu X, Su B, Wang X, Smith MA, Perry G (2007) Causes of oxidative stress in Alzheimer’s disease. Cell Mol Sci 64:2202–2210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grant PI05/1570 and supported by the European Commission under the Sixth Framework Programme (BrainNet Europe II, LSHM-CT-2004-503039). We wish to thank T Yohannan for editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidre Ferrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Gracia, E., Torrejón-Escribano, B. & Ferrer, I. Dystrophic neurites of senile plaques in Alzheimer’s disease are deficient in cytochrome c oxidase. Acta Neuropathol 116, 261–268 (2008). https://doi.org/10.1007/s00401-008-0370-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0370-6

Keywords

Navigation