Skip to main content

Advertisement

Log in

Mechanisms of amyloid plaque pathogenesis

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The first ultrastructural investigations of Alzheimer’s disease noted the prominence of degenerating mitochondria in the dystrophic neurites of amyloid plaques, and speculated that this degeneration might be a major contributor to plaque pathogenesis. However, the fate of these organelles has received scant consideration in the intervening decades. A number of hypotheses for the formation and progression of amyloid plaques have since been suggested, including glial secretion of amyloid, somal and synaptic secretion of amyloid-beta protein from neurons, and endosomal–lysosomal aggregation of amyloid-beta protein in the cell bodies of neurons, but none of these hypotheses fully account for the focal accumulation of amyloid in plaques. In addition to Alzheimer’s disease, amyloid plaques occur in a variety of conditions, and these conditions are all accompanied by dystrophic neurites characteristic of disrupted axonal transport. The disruption of axonal transport results in the autophagocytosis of mitochondria without normal lysosomal degradation, and recent evidence from aging, traumatic injury, Alzheimer’s disease and transgenic mice models of Alzheimer’s disease, suggests that the degeneration of these autophagosomes may lead to amyloid production within dystrophic neurites. The theory of amyloid plaque pathogenesis has thus come full circle, back to the intuitions of the very first researchers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akiyama H, Kondo H, Arai T, Ikeda K, Kato M, Iseki E, Schwab C, McGeer PL (2004) Expression of BRI, the normal precursor of the amyloid protein of familial British dementia, in human brain. Acta Neuropathol (Berl) 107:53–58

    CAS  Google Scholar 

  2. Arendt T (2003) Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 71:83–248

    PubMed  Google Scholar 

  3. Arimon M, Diez-Perez I, Kogan MJ, Durany N, Giralt E, Sanz F, Fernandez-Busquets X (2006) Fine structure study of Aβ1–42 fibrillogenesis with atomic force microscopy. FASEB J 19:1344–1346

    Google Scholar 

  4. Armstrong RA (1995) Is the clustering of beta-amyloid (A beta) deposits in the frontal cortex of Alzheimer patients determined by blood vessels? Neurosci Lett 195:121–124

    PubMed  CAS  Google Scholar 

  5. Armstrong RA (1998) Beta-amyloid plaques: stages in life history or independent origin? Dement Geriatr Cogn Disord 9:227–238

    PubMed  CAS  Google Scholar 

  6. Armstrong RA (1999) Do beta-amyloid (Abeta) deposits in patients with Alzheimer’s disease and Down’s syndrome grow according to the log-normal model? Neurosci Lett 261:97–100

    PubMed  CAS  Google Scholar 

  7. Attems J, Jellinger KA, Lintner F (2005) Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol (Berl) 110:222–231

    Google Scholar 

  8. Attems J, Quass M, Jellinger KA, Lintner F (2007) Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci 257:49–55

    PubMed  Google Scholar 

  9. Azizeh BY, Head E, Ibrahim MA, Torp R, Tenner AJ, Kim RC, Lott IT, Cotman CW (2000) Molecular dating of senile plaques in the brains of individuals with Down syndrome and in aged dogs. Exp Neurol 163:111–122

    PubMed  CAS  Google Scholar 

  10. Baglioni S, Casamenti F, Bucciantini M, Luheshi LM, Taddei N, Chiti F, Dobson CM, Stefani M (2006) Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J Neurosci 26:8160–8167

    PubMed  CAS  Google Scholar 

  11. Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ (1993) Experimental induction of beta-amyloid plaques and cerebral angiopathy in primates. Ann NY Acad Sci 695:228–231

    PubMed  CAS  Google Scholar 

  12. Beer RE, Ulrich J (1993) Alzheimer plaque density and duration of dementia. Arch Gerontol Geriatr 16:1–7

    PubMed  CAS  Google Scholar 

  13. Benes FM, Farol PA, Majocha RE, Marotta CA, Bird ED (1991) Evidence for axonal loss in regions occupied by senile plaques in Alzheimer cortex. Neuroscience 42:651–660

    PubMed  CAS  Google Scholar 

  14. Benzing WC, Brady DR, Mufson EJ, Armstrong DM (1993) Evidence that transmitter-containing dystrophic neurites precede those containing paired helical filaments within senile plaques in the entorhinal cortex of nondemented elderly and Alzheimer’s disease patients. Brain Res 619:55–68

    PubMed  CAS  Google Scholar 

  15. Blanchard V, Moussaoui S, Czech C, Touchet N, Bonici B, Planche M, Canton T, Jedidi I, Gohin M, Wirths O, Bayer TA, Langui D, Duyckaerts C, Tremp G, Pradier L (2003) Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Exp Neurol 184(1):247–263

    PubMed  CAS  Google Scholar 

  16. Borchelt DR, Koliatsos VE, Guarnieri M, Pardo CA, Sisodia SS, Price DL (1994) Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem 269:14711–14714

    PubMed  CAS  Google Scholar 

  17. Boutajangout A, Authelet M, Blanchard V, Touchet N, Tremp G, Pradier L, Brion JP (2004) Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer’s disease mutants of APP and presenilin-1. Neurobiol Dis 15:47–60

    PubMed  CAS  Google Scholar 

  18. Brendza RP, O’Brien C, Simmons K, McKeel DW, Bales KR, Paul SM, Olney JW, Sanes JR, Holtzman DM (2003) PDAPP, YFP double transgenic mice: a tool to study amyloid-beta associated changes in axonal, dendritic, and synaptic structures. J Comp Neurol 456:375–383

    PubMed  CAS  Google Scholar 

  19. Brendza RP, Bacskai BJ, Cirrito JR, Simmons KA, Skoch JM, Klunk WE, Mathis CA, Bales KR, Paul SM, Hyman BT, Holtzman DM (2005) Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. J Clin Invest 115:428–433

    PubMed  CAS  Google Scholar 

  20. Brunk UT, Terman A (2002) The mitochondrial–lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002

    PubMed  CAS  Google Scholar 

  21. Busciglio J, Hartmann H, Lorenzo A, Wong C, Baumann K, Sommer B, Staufenbiel M, Yankner BA (1997) Neuronal localization of presenilin-1 and association with amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. J Neurosci 17:5101–5107

    PubMed  CAS  Google Scholar 

  22. Büki A, Povlishock JT (2006) All roads lead to disconnection? Traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181–194

    Google Scholar 

  23. Burgermeister P, Calhoun ME, Winkler DT, Jucker M (2000) Mechanisms of cerebrovascular amyloid deposition. Lessons from mouse models. Ann NY Acad Sci 903:307–316

    PubMed  CAS  Google Scholar 

  24. Bussiere T, Bard F, Barbour R, Grajeda H, Guido T, Khan K, Schenk D, Games D, Seubert P, Buttini M (2004) Morphological characterization of Thioflavin-S-positive amyloid plaques in transgenic Alzheimer mice and effect of passive Abeta immunotherapy on their clearance. Am J Pathol 165(3):987–995

    PubMed  CAS  Google Scholar 

  25. Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D, Sturchler-Pierrat C, Sommer B, Staufenbiel M, Jucker M (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 96:14088–14093

    PubMed  CAS  Google Scholar 

  26. Casal C, Serratosa J, Tusell JM (2002) Relationship between beta-AP peptide aggregation and microglial activation. Brain Res 928:76–84

    PubMed  CAS  Google Scholar 

  27. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    PubMed  CAS  Google Scholar 

  28. Cataldo AM, Barnett JL, Mann DM, Nixon RA (1996) Colocalization of lysosomal hydrolase and beta-amyloid in diffuse plaques of the cerebellum and striatum in Alzheimer’s disease and Down’s syndrome. J Neuropathol Exp Neurol 55:704–715

    PubMed  CAS  Google Scholar 

  29. Cataldo AM, Hamilton DJ, Barnett JL, Paskevich PA, Nixon RA (1996) Properties of the endosomal–lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J Neurosci 16:186–199

    PubMed  CAS  Google Scholar 

  30. Cataldo AM, Thayer CY, Bird ED, Wheelock TR, Nixon RA (1990) Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer’s disease: evidence for a neuronal origin. Brain Res 513:181–192

    PubMed  CAS  Google Scholar 

  31. Caughey B, Lansbury PT Jr (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Ann Rev Neurosci 26:267–298

    PubMed  CAS  Google Scholar 

  32. Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM (2003) Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis 5:209–228

    PubMed  Google Scholar 

  33. Chen X-H, Meaney DF, Xu B-N, Nonaka M, McIntosh TK, Wolf JA, Saatman KE, Smith DH (1999) Evolution of neurofilament subtype accumulation in axons following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58:588–596

    PubMed  CAS  Google Scholar 

  34. Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH (2004) Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol 165:357–371

    PubMed  CAS  Google Scholar 

  35. Choi SI, Vidal R, Frangione B, Levy E (2004) Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB J 18:373–375

    PubMed  CAS  Google Scholar 

  36. Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST, Webb WW, Hyman BT (2001) Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci 21(3):858–864

    PubMed  CAS  Google Scholar 

  37. Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci 23:8844–8853

    PubMed  CAS  Google Scholar 

  38. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922

    PubMed  CAS  Google Scholar 

  39. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    PubMed  CAS  Google Scholar 

  40. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    PubMed  CAS  Google Scholar 

  41. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci USA 88:7552–7556

    PubMed  CAS  Google Scholar 

  42. Cras P, Kawai M, Siedlak S, Mulvihill P, Gambetti P, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1990) Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer’s disease. Am J Pathol 137:241–246

    PubMed  CAS  Google Scholar 

  43. Cummings BJ, Su JH, Cotman CW, White R, Russell MJ (1993) Beta-amyloid accumulation in aged canine brain: a model of early plaque formation in Alzheimer’s disease. Neurobiol Aging 14:547–560

    PubMed  CAS  Google Scholar 

  44. Cummings BJ, Su JH, Geddes JW, Van Nostrand WE, Wagner SL, Cunningham DD, Cotman CW (1992) Aggregation of the amyloid precursor protein within degenerating neurons and dystrophic neurites in Alzheimer’s disease. Neuroscience 48:763–777

    PubMed  CAS  Google Scholar 

  45. Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    PubMed  CAS  Google Scholar 

  46. D’Andrea MR, Nagele RG, Wang H-Y, Peterson PA, Lee DHS (2001) Evidence that neurons accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134

    CAS  Google Scholar 

  47. D’Andrea MR, Reiser PA, Gumula NA, Hertzog BM, Andrade-Gordon P (2001) Application of triple immunohistochemistry to characterize amyloid plaque-associated inflammation in brains with Alzheimer’s disease. Biotech Histochem 76:97–106

    CAS  Google Scholar 

  48. D’Andrea MR, Reiser PA, Polkovitch DA, Gumula NA, Branchide B, Hertzog BM, Schmidheiser D, Belkowski S, Gastard MC, Andrade-Gordon P (2003) The use of formic acid to embellish amyloid plaque detection in Alzheimer’s disease tissues misguides key observations. Neurosci Lett 342:114–118

    PubMed  CAS  Google Scholar 

  49. Davies CA, Mann DM (1993) Is the “preamyloid” of diffuse plaques in Alzheimer’s disease really nonfibrillar? Am J Pathol 143(6):1594–1605

    PubMed  CAS  Google Scholar 

  50. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    PubMed  CAS  Google Scholar 

  51. DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149:329–340

    PubMed  CAS  Google Scholar 

  52. DeWitt DA, Silver J (1996) Regenerative failure: a potential mechanism for neuritic dystrophy in Alzheimer’s disease. Exp Neurol 142:103–110

    PubMed  CAS  Google Scholar 

  53. Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339

    PubMed  CAS  Google Scholar 

  54. Dickson TC, Vickers JC (2001) The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience 105:99–107

    PubMed  CAS  Google Scholar 

  55. Ditaranto K, Tekirian TL, Yang AJ (2001) Lysosomal membrane damage in soluble Abeta-mediated cell death in Alzheimer’s disease. Neurobiol Dis 8:19–31

    PubMed  CAS  Google Scholar 

  56. Donahue JE, Flaherty SL, Johanson CE, Duncan JA 3rd, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa EG (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol (Berl) 112:405–415

    CAS  Google Scholar 

  57. El-Agnaf O, Gibson G, Lee M, Wright A, Austen BM (2004) Properties of neurotoxic peptides related to the Bri gene. Protein Pept Lett 11:207–212

    PubMed  CAS  Google Scholar 

  58. Elfenbein HA, Rosen RF, Stephens SL, Switzer RC, Smith Y, Pare J, Mehta PD, Warzok R, Walker LC (2007) Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 22:155–167

    PubMed  CAS  Google Scholar 

  59. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) CCR2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    PubMed  CAS  Google Scholar 

  60. Esler WP, Stimson ER, Ghilardi JR, Vinters HV, Lee JP, Mantyh PW, Maggio JE (1996) In vitro growth of Alzheimer’s disease beta-amyloid plaques displays first-order kinetics. Biochemistry 35:749–757

    PubMed  CAS  Google Scholar 

  61. Ferrer I, Blanco R, Carmona M, Puig B, Ribera R, Rey MJ, Ribalta T (2001) Prion protein expression in senile plaques in Alzheimer’s disease. Acta Neuropathol (Berl) 101:49–56

    CAS  Google Scholar 

  62. Ferrer I, Marti E, Tortosa A, Blasi J (1998) Dystrophic neurites of senile plaques are defective in proteins involved in exocytosis and neurotransmission. J Neuropathol Exp Neurol 57(3):218–225

    PubMed  CAS  Google Scholar 

  63. Fiala JC, Feinberg MD, Peters A, Barbas H (2007) Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct Funct doi:10.1007/s00429-007-0153-1

  64. Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465:90–103

    PubMed  Google Scholar 

  65. Fonseca MI, Head E, Velazquez P, Cotman CW, Tenner AJ (1999) The presence of isoaspartic acid in beta-amyloid plaques indicates plaque age. Exp Neurol 157:277–288

    PubMed  CAS  Google Scholar 

  66. Frackowiak J, Wisniewski HM, Wegiel J, Merz GS, Iqbal K, Wang KC (1992) Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce beta-amyloid fibrils. Acta Neuropathol (Berl) 84(3):225–233

    CAS  Google Scholar 

  67. Fraser PE, Levesque L, McLachlan DR (1994) Alzheimer A beta amyloid forms an inhibitory neuronal substrate. J Neurochem 62:1227–1230

    Article  PubMed  CAS  Google Scholar 

  68. Funato H, Yoshimura M, Yamazaki T, Saido TC, Ito Y, Yokofujita J, Okeda R, Ihara Y (1998) Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain. Am J Pathol 152:983–992

    PubMed  CAS  Google Scholar 

  69. Gajdusek DC (1985) Hypothesis: interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system. N Engl J Med 312:714–719

    Article  PubMed  CAS  Google Scholar 

  70. Games D, Buttini M, Kobayashi D, Schenk D, Seubert P (2006) Mice as models: transgenic approaches and Alzheimer’s disease. J Alzheimers Dis 9(3 Suppl):133–149

    PubMed  CAS  Google Scholar 

  71. Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem doi:10.1111/j.1471–4159.2007.04613.x

  72. Giannakopoulos P, Hof PR, Michel JP, Guimon J, Bouras C (1997) Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Res Rev 25(2):217–245

    PubMed  CAS  Google Scholar 

  73. Ginsberg SD, Crino PB, Hemby SE, Weingarten JA, Lee VM, Eberwine JH, Trojanowski JQ (1999) Predominance of neuronal mRNAs in individual Alzheimer’s disease senile plaques. Ann Neurol 45:174–181

    PubMed  CAS  Google Scholar 

  74. Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17:137–145

    PubMed  CAS  Google Scholar 

  75. Gonatas NK, Anderson W, Evangelista I (1967) The contribution of altered synapses in the senile plaque: an electron microscopic study in Alzheimer’s dementia. J Neuropathol Exp Neurol 26(1):25–39

    PubMed  CAS  Google Scholar 

  76. Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett KW, Connor K, Melachrino J, O’Callaghan JP, Morgan D (2002) Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 173:183–195

    PubMed  CAS  Google Scholar 

  77. Götz J, Ittner LM, Kins S (2006) Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 98:993–1106

    PubMed  Google Scholar 

  78. Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Aβ accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:1235–1244

    PubMed  CAS  Google Scholar 

  79. Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20

    PubMed  CAS  Google Scholar 

  80. Gowing E, Roher AE, Woods AS, Cotter RJ, Chaney M, Little SP, Ball MJ (1994) Chemical characterization of Abeta 17–42 peptide, a component of diffuse amyloid deposits of Alzheimer disease. J Biol Chem 269:10987–10990

    PubMed  CAS  Google Scholar 

  81. Grutzendler J, Helmin K, Tsai J, Gan WB (2007) Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer’s disease. Ann NY Acad Sci 1097:30–39

    PubMed  Google Scholar 

  82. Gyure KA, Durham R, Stewart WF, Smialek JE, Troncoso JC (2001) Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125:489–492

    PubMed  CAS  Google Scholar 

  83. Hainfellner JA, Wanschitz J, Jellinger K, Liberski PP, Gullotta F, Budka H (1998) Coexistence of Alzheimer-type neuropathology in Creutzfeldt–Jakob disease. Acta Neuropathol (Berl) 96:116–122

    CAS  Google Scholar 

  84. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660

    PubMed  CAS  Google Scholar 

  85. Harigaya Y, Tomidokoro Y, Ikeda M, Sasaki A, Kawarabayashi T, Matsubara E, Kanai M, Saido TC, Younkin SG, Shoji M (2006) Type-specific evolution of amyloid plaque and angiopathy in APPsw mice. Neurosci Lett 395:37–41

    PubMed  CAS  Google Scholar 

  86. Hartmann T, Bieger SC, Bruhl B, Tienari PJ, Ida N, Allsop D, Roberts GW, Masters CL, Dotti CG, Unsicker K, Beyreuther K (1997) Distinct sites of intracellular production for Alzheimer’s disease Abeta40/42 amyloid peptides. Nat Med 3:1016–1020

    PubMed  CAS  Google Scholar 

  87. Head E, Azizeh BY, Lott IT, Tenner AJ, Cotman CW, Cribbs DH (2001) Complement association with neurons and beta-amyloid deposition in the brains of aged individuals with Down Syndrome. Neurobiol Dis 8:252–265

    PubMed  CAS  Google Scholar 

  88. Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T, Van Leuven F (2005) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2:22

    PubMed  Google Scholar 

  89. Higgins LS, Holtzman DM, Rabin J, Mobley WC, Cordell B (1994) Transgenic mouse brain histopathology resembles early Alzheimer’s disease. Ann Neurol 35:598–607

    PubMed  CAS  Google Scholar 

  90. Higgins LS, Murphy GM Jr, Forno LS, Catalano R, Cordell B (1996) P3 beta-amyloid peptide has a unique and potentially pathogenic immunohistochemical profile in Alzheimer’s disease brain. Am J Pathol 149:585–596

    PubMed  CAS  Google Scholar 

  91. Hirayama A, Horikoshi Y, Maeda M, Ito M, Takashima S (2003) Characteristic developmental expression of amyloid beta40, 42 and 43 in patients with Down syndrome. Brain Dev 25:180–185

    PubMed  Google Scholar 

  92. Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T (2003) Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 23:8967–8677

    PubMed  CAS  Google Scholar 

  93. Hiruma H, Nishida S, Katakura T, Kusakabe T, Takenaka T, Kawakami T (1999) Extracellular potassium rapidly inhibits axonal transport of particles in cultured mouse dorsal root ganglion neurites. J Neurobiol 38:225–233

    PubMed  CAS  Google Scholar 

  94. Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121:305–315

    PubMed  CAS  Google Scholar 

  95. Horie H, Takenaka T, Kaiho M (1983) Effects of disruption of microtubules on translocation of particles and morphology in tissue cultured neurites. Brain Res 288:85–93

    PubMed  CAS  Google Scholar 

  96. Hyman BT, West HL, Rebeck GW, Lai F, Mann DM (1995) Neuropathological changes in Down’s syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch Neurol 52:373–378

    PubMed  CAS  Google Scholar 

  97. Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VM, Clark RS, Marion DW, Wisniewski SR, DeKosky ST (2004) Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 190:192–203

    PubMed  CAS  Google Scholar 

  98. Isobe I, Yanagisawa K, Michikawa M (2000) A possible model of senile plaques using synthetic amyloid beta-protein and rat glial culture. Exp Neurol 162:51–60

    PubMed  CAS  Google Scholar 

  99. Ivins KJ, Bui ET, Cotman CW (1998) Beta-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis. Neurobiol Dis 5:365–378

    PubMed  CAS  Google Scholar 

  100. Iwatsubo T, Saido TC, Mann DM, Lee VM, Trojanowski JQ (1996) Full-length amyloid-beta (1–42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am J Pathol 149:1823–1830

    PubMed  CAS  Google Scholar 

  101. Jankowsky JL, Slunt HH, Gonzales V, Savonenko AV, Wen JC, Jenkins NA, Copeland NG, Younkin LH, Lester HA, Younkin SG, Borchelt DR (2005) Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease. PLoS Med 2:e355

    PubMed  Google Scholar 

  102. Jeffrey M, Goodsir CM, Bruce ME, McBride PA, Farquhar C (1994) Morphogenesis of amyloid plaques in 87V murine scrapie. Neuropathol Appl Neurobiol 20:535–542

    PubMed  CAS  Google Scholar 

  103. Jellinger K (1973) Neuroaxonal dystrophy: its natural history and related disorders. In: Zimmerman HM (ed) Progress in neuropathology. vol. II. Grune & Stratton, New York, pp 129–180

    Google Scholar 

  104. Jendroska K, Poewe W, Daniel SE, Pluess J, Iwerssen-Schmidt H, Paulsen J, Barthel S, Schelosky L, Cervos-Navarro J, DeArmond SJ (1995) Ischemic stress induces deposition of amyloid beta immunoreactivity in human brain. Acta Neuropathol (Berl) 90:461–466

    CAS  Google Scholar 

  105. Jeynes B, Provias J (2006) The possible role of capillary cerebral amyloid angiopathy in Alzheimer lesion development: a regional comparison. Acta Neuropathol (Berl) 112:417–427

    CAS  Google Scholar 

  106. Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135:309–319

    PubMed  CAS  Google Scholar 

  107. Jordan BD (2000) Chronic traumatic brain injury associated with boxing. Semin Neurol 20:179–185

    PubMed  CAS  Google Scholar 

  108. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LSB (2001) Kinesin-mediated axonal transport of a membrane compartment containing secretase and presenilin-1 requires APP. Nature 414:643–648

    PubMed  CAS  Google Scholar 

  109. Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, Roher AE, Walker LC (2000) Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 20:3606–3611

    PubMed  CAS  Google Scholar 

  110. Kato S, Gondo T, Hoshii Y, Takahashi M, Yamada M, Ishihara T (1998) Confocal observation of senile plaques in Alzheimer’s disease: senile plaque morphology and relationship between senile plaques and astrocytes. Pathol Int 48:332–340

    PubMed  CAS  Google Scholar 

  111. Kawai M, Cras P, Perry G (1992) Serial reconstruction of beta-protein amyloid plaques: relationship to microvessels and size distribution. Brain Res 592:278–282

    PubMed  CAS  Google Scholar 

  112. Kawai M, Cras P, Richey P, Tabaton M, Lowery DE, Gonzalez-DeWhitt PA, Greenberg BD, Gambetti P, Perry G (1992) Subcellular localization of amyloid precursor protein in senile plaques of Alzheimer’s disease. Am J Pathol 140:947–958

    PubMed  CAS  Google Scholar 

  113. Kawarabayashi T, Shoji M, Yamaguchi H, Tanaka M, Harigaya Y, Ishiguro K, Hirai S (1993) Amyloid beta protein precursor accumulates in swollen neurites throughout rat brain with aging. Neurosci Lett 153:73–76

    PubMed  CAS  Google Scholar 

  114. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381

    PubMed  CAS  Google Scholar 

  115. Kidd M (1964) Alzheimer’s disease: an electron microscopical study. Brain 87:307–320

    PubMed  CAS  Google Scholar 

  116. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    PubMed  CAS  Google Scholar 

  117. King CE, Adlard PA, Dickson TC, Vickers JC (2000) Neuronal response to physical injury and its relationship to the pathology of Alzheimer’s disease. Clin Exp Pharmacol Physiol 27:548–552

    PubMed  CAS  Google Scholar 

  118. Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57:230–236

    PubMed  CAS  Google Scholar 

  119. Knauer MF, Soreghan B, Burdick D, Kosmoski J, Glabe CG (1992) Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc Natl Acad Sci USA 89:7437–7441

    PubMed  CAS  Google Scholar 

  120. Kokubo H, Kayed R, Glabe CG, Saido TC, Iwata N, Helms JB, Yamaguchi H (2005) Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. Brain Res 1045:224–228

    PubMed  CAS  Google Scholar 

  121. Kokubo H, Kayed R, Glabe CG, Yamaguchi H (2005) Soluble Abeta oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer’s disease brain. Brain Res 1031:222–228

    PubMed  CAS  Google Scholar 

  122. Kokubo H, Saido TC, Iwata N, Helms JB, Shinohara R, Yamaguchi H (2005) Part of membrane-bound Abeta exists in rafts within senile plaques in Tg2576 mouse brain. Neurobiol Aging 26:409–418

    PubMed  CAS  Google Scholar 

  123. Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci USA 87:1561–1565

    PubMed  CAS  Google Scholar 

  124. Kovacs DM, Fausett HJ, Page KJ, Kim TW, Moir RD, Merriam DE, Hollister RD, Hallmark OG, Mancini R, Felsenstein KM, Hyman BT, Tanzi RE, Wasco W (1996) Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 2:224–229

    PubMed  CAS  Google Scholar 

  125. Krigman MR, Feldman RG, Bensch K (1965) Alzheimer’s presenile dementia: a histochemical and electron microscopic study. Lab Invest 14:381–396

    PubMed  CAS  Google Scholar 

  126. Kumar-Singh S, Cras P, Wang R, Kros JM, van Swieten J, Lubke U, Ceuterick C, Serneels S, Vennekens K, Timmermans JP, Van Marck E, Martin JJ, van Duijn CM, Van Broeckhoven C (2002) Dense-core senile plaques in the Flemish variant of Alzheimer’s disease are vasocentric. Am J Pathol 161:507–520

    PubMed  CAS  Google Scholar 

  127. Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C (2005) Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am J Pathol 167:527–543

    PubMed  CAS  Google Scholar 

  128. Kwok JB, Halliday GM, Brooks WS, Dolios G, Laudon H, Murayama O, Hallupp M, Badenhop RF, Vickers J, Wang R, Naslund J, Takashima A, Gandy SE, Schofield PR (2003) Presenilin-1 mutation L271V results in altered exon 8 splicing and Alzheimer’s disease with non-cored plaques and no neuritic dystrophy. J Biol Chem 278:6748–6754

    PubMed  CAS  Google Scholar 

  129. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    PubMed  CAS  Google Scholar 

  130. LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s Abeta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9:21–30

    PubMed  CAS  Google Scholar 

  131. Lalowski M, Golabek A, Lemere CA, Selkoe DJ, Wisniewski HM, Beavis RC, Frangione B, Wisniewski T (1996) The “nonamyloidogenic” p3 fragment (amyloid beta17–42) is a major constituent of Down’s syndrome cerebellar preamyloid. J Biol Chem 271:33623–33631

    PubMed  CAS  Google Scholar 

  132. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    PubMed  CAS  Google Scholar 

  133. Lampert PW (1967) A comparative electron microscopic study of reactive, degenerating, regenerating, and dystrophic axons. J Neuropathol Exp Neurol 26:345–368

    PubMed  CAS  Google Scholar 

  134. Lampert PW (1971) Fine structural changes of neurites in Alzheimer’s disease. Acta Neuropathol (Berl.) Suppl. V:49–53

    Google Scholar 

  135. Lazarov O, Lee M, Peterson DA, Sisodia SS (2002) Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22:9785–9793

    PubMed  CAS  Google Scholar 

  136. Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32

    PubMed  CAS  Google Scholar 

  137. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    PubMed  CAS  Google Scholar 

  138. Liao L, Cheng D, Wang J, Duong DM, Losik TG, Gearing M, Rees HD, Lah JJ, Levey AI, Peng J (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem 279:37061–37068

    PubMed  CAS  Google Scholar 

  139. Liberski PP (2004) Amyloid plaques in transmissible spongiform encephalopathies (prion diseases). Folia Neuropathol 42(Suppl B):109–119

    PubMed  Google Scholar 

  140. Liberski PP, Yanagihara R, Gibbs CJ Jr, Gajdusek DC (1989) Scrapie as a model for neuroaxonal dystrophy: ultrastructural studies. Exp Neurol 106:133–141

    PubMed  CAS  Google Scholar 

  141. Lin H, Bhatia R, Lal R (2001) Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444

    PubMed  CAS  Google Scholar 

  142. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247

    PubMed  CAS  Google Scholar 

  143. Luse SA, Smith KR Jr (1964) The ultrastructure of senile plaques. Am J Pathol 44:553–563

    PubMed  CAS  Google Scholar 

  144. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollack S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue L-F, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    PubMed  CAS  Google Scholar 

  145. Mackenzie IR (1994) Senile plaques do not progressively accumulate with normal aging. Acta Neuropathol (Berl) 87:520–525

    CAS  Google Scholar 

  146. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Human Mol Genet 15:1437–1449

    CAS  Google Scholar 

  147. Mann DM, Iwatsubo T (1996) Diffuse plaques in the cerebellum and corpus striatum in Down’s syndrome contain amyloid beta protein (Abeta) only in the form of Abeta 42(43). Neurodegeneration 5:115–120

    PubMed  CAS  Google Scholar 

  148. Martin LJ, Pardo CA, Cork LC, Price DL (1994) Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am J Pathol 145:1358–1381

    PubMed  CAS  Google Scholar 

  149. Martin LJ, Sisodia SS, Koo EH, Cork LC, Dellovade TL, Weidemann A, Beyreuther K, Masters C, Price DL (1991) Amyloid precursor protein in aged nonhuman primates. Proc Natl Acad Sci USA 88:1461–1465

    PubMed  CAS  Google Scholar 

  150. Masliah E, Mallory M, Deerinck T, DeTeresa R, Lamont S, Miller A, Terry RD, Carragher B, Ellisman M (1993) Re-evaluation of the structural organization of neuritic plaques in Alzheimer’s disease. J Neuropathol Exp Neurol 52:619–632

    PubMed  CAS  Google Scholar 

  151. Masliah E, Miller A, Terry RD (1993) The synaptic organization of the neocortex in Alzheimer’s disease. Med Hypoth 41:334–340

    CAS  Google Scholar 

  152. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    PubMed  CAS  Google Scholar 

  153. McGeer PL, Akiyama H, Kawamata T, Yamada T, Walker DG, Ishii T (1992) Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy. J Neurosci Res 31:428–442

    PubMed  CAS  Google Scholar 

  154. McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, Skipper L, Murphy MP, Beard J, Das P, Jansen K, Delucia M, Lin WL, Dolios G, Wang R, Eckman CB, Dickson DW, Hutton M, Hardy J, Golde T (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47:191–199

    PubMed  CAS  Google Scholar 

  155. McGowan E, Sanders S, Iwatsubo T, Takeuchi A, Saido T, Zehr C, Yu X, Uljon S, Wang R, Mann D, Dickson D, Duff K (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 6:231–244

    PubMed  CAS  Google Scholar 

  156. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    PubMed  CAS  Google Scholar 

  157. Meyer-Luehmann M, Stalder M, Herzig MC, Kaeser SA, Kohler E, Pfeifer M, Boncristiano S, Mathews PM, Mercken M, Abramowski D, Staufenbiel M, Jucker M (2003) Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 6:370–377

    PubMed  CAS  Google Scholar 

  158. Miravalle L, Calero M, Takao M, Roher AE, Ghetti B, Vidal R (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44:10810–10821

    PubMed  CAS  Google Scholar 

  159. Miyazono M, Kitamoto T, Iwaki T, Tateishi J (1992) Colocalization of prion protein and beta protein in the same amyloid plaques in patients with Gerstmann-Straussler syndrome. Acta Neuropathol (Berl) 83:333–339

    CAS  Google Scholar 

  160. Mochizuki A, Peterson JW, Mufson EJ, Trapp BD (1996) Amyloid load and neural elements in Alzheimer’s disease and nondemented individuals with high amyloid plaque density. Exp Neurol 142:89–102

    PubMed  CAS  Google Scholar 

  161. Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G (2007) Autophagocytosis of Mitochondria Is Prominent in Alzheimer Disease. J Neuropathol Exp Neurol 66:525–532

    PubMed  CAS  Google Scholar 

  162. Mori C, Spooner ET, Wisniewsk KE, Wisniewski TM, Yamaguch H, Saido TC, Tolan DR, Selkoe DJ, Lemere CA (2002) Intraneuronal Abeta42 accumulation in Down syndrome brain. Amyloid 9:88–102

    PubMed  CAS  Google Scholar 

  163. Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb JH, Hills R, Brayne C, Huppert FA, Paykel ES, McGee M, Jakes R, Honer WG, Harrington CR, Wischik CM (2000) Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol 157:623–636

    PubMed  CAS  Google Scholar 

  164. Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY (2003) Astrocytes accumulate Abeta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 971:197–209

    PubMed  CAS  Google Scholar 

  165. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    PubMed  CAS  Google Scholar 

  166. Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimer Dis 9:277–289

    CAS  Google Scholar 

  167. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

    PubMed  Google Scholar 

  168. Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828–13836

    PubMed  CAS  Google Scholar 

  169. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Eldik LV, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    PubMed  CAS  Google Scholar 

  170. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    PubMed  CAS  Google Scholar 

  171. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    PubMed  CAS  Google Scholar 

  172. Oddo S, Caccamo A, Smith IF, Green KN, LaFerla FM (2006) A dynamic relationship between intracellular and extracellular pools of Abeta. Am J Pathol 168:184–194

    PubMed  CAS  Google Scholar 

  173. Ohgami T, Kitamoto T, Weidmann A, Beyreuther K, Tateishi J (1991) Alzheimer’s amyloid precursor protein-positive degenerative neurites exist even within kuru plaques not specific to Alzheimer’s disease. Am J Pathol 139:1245–1250

    PubMed  CAS  Google Scholar 

  174. Ohyagi Y, Tsuruta Y, Motomura K, Miyoshi K, Kikuchi H, Iwaki T, Taniwaki T, Kira J (2007) Intraneuronal amyloid beta42 enhanced by heating but counteracted by formic acid. J Neurosci Methods 159:134–138

    PubMed  CAS  Google Scholar 

  175. Oide T, Kinoshita T, Arima K (2006) Regression stage senile plaques in the natural course of Alzheimer’s disease. Neuropathol Appl Neurobiol 32:539–556

    PubMed  CAS  Google Scholar 

  176. Okamoto K, Yamaguchi H, Hirai S, Shoji M, Inoue K, Takatama M (1989) Immunogold electron microscopic study of cerebrovascular and senile plaque amyloid using anti-beta protein antibody. Prog Clin Biol Res 317:953–963

    PubMed  CAS  Google Scholar 

  177. Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH (2005) Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57:128–134

    PubMed  Google Scholar 

  178. Pappolla MA, Omar RA, Sambamurti K, Anderson JP, Robakis NK (1992) The genesis of the senile plaque. Further evidence in support of its neuronal origin. Am J Pathol 141:1151–1159

    PubMed  CAS  Google Scholar 

  179. Pappolla MA, Omar RA, Vinters HV (1991) Image analysis microspectroscopy shows that neurons participate in the genesis of a subset of early primitive (diffuse) senile plaques. Am J Pathol 139:599–607

    PubMed  CAS  Google Scholar 

  180. Parbhu A, Lin H, Thimm J, Lal R (2002) Imaging real-time aggregation of amyloid beta protein (1–42) by atomic force microscopy. Peptides 23:1265–1270

    PubMed  CAS  Google Scholar 

  181. Paresce DM, Ghosh RN, Maxfield FR (1996) Microglial cells internalize aggregates of Alzheimer’s disease amyloid b-protein via a scavenger receptor. Neuron 17:553–565

    PubMed  CAS  Google Scholar 

  182. Pasternak SH, Bagshaw RD, Guiral M, Zhang S, Ackerley CA, Pak BJ, Callahan JW, Mahuran DJ (2003) Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 278:26687–26694

    PubMed  CAS  Google Scholar 

  183. Patton RL, Kalback WM, Esh CL, Kokjohn TA, Van Vickle GD, Luehrs DC, Kuo YM, Lopez J, Brune D, Ferrer I, Masliah E, Newel AJ, Beach TG, Castano EM, Roher AE (2006) Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer’s disease patients: a biochemical analysis. Am J Pathol 169:1048–1063

    PubMed  CAS  Google Scholar 

  184. Peters A (1991) Aging in monkey cerebral cortex. In: Peters A, Jones EG (eds) Cerebral cortex. vol. 9. Normal and altered states of function. Plenum, New York, pp 485–510

    Google Scholar 

  185. Phinney AL, Deller T, Stalder M, Calhoun ME, Frotscher M, Sommer B, Staufenbiel M, Jucker M (1999) Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J Neurosci 19:8552–8559

    PubMed  CAS  Google Scholar 

  186. Pierce JE, Trojanowski JQ, Graham DI, Smith DH, McIntosh TK (1996) Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat. J Neurosci 16:1083–1090

    PubMed  CAS  Google Scholar 

  187. Pike CJ, Cummings BJ, Cotman CW (1992) beta-Amyloid induces neuritic dystrophy in vitro: similarities with Alzheimer pathology. Neuroreport 3:769–772

    PubMed  CAS  Google Scholar 

  188. Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and dynein are the primary motors for fast axonal transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068

    PubMed  CAS  Google Scholar 

  189. Pluta R, Kida E, Lossinsky AS, Golabek AA, Mossakowski MJ, Wisniewski HM (1994) Complete cerebral ischemia with short-term survival in rats induced by cardiac arrest. I. Extracellular accumulation of Alzheimer’s beta-amyloid protein precursor in the brain. Brain Res 649:323–328

    PubMed  CAS  Google Scholar 

  190. Povlishock JT (1992) Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 2:1–12

    PubMed  CAS  Google Scholar 

  191. Powers JM, Skeen JT (1988) Ultrastructural heterogeneity in cerebral amyloid of Alzheimer’s disease. Acta Neuropathol (Berl) 76:613–623

    CAS  Google Scholar 

  192. Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol (Berl) 91:226–235

    CAS  Google Scholar 

  193. Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996) Plasma membrane fragility in dystrophic neurites in senile plaques of Alzheimer’s disease: an index of oxidative stress. Acta Neuropathol (Berl) 91:1–5

    CAS  Google Scholar 

  194. Price DL, Martin LJ, Sisodia SS, Wagster MV, Koo EH, Walker LC, Koliatsos VE, Cork LC (1991) Aged non-human primates: an animal model of age-associated neurodegenerative disease. Brain Pathol 1:287–296

    PubMed  CAS  Google Scholar 

  195. Probst A, Basler V, Bron B, Ulrich J (1983) Neuritic plaques in senile dementia of Alzheimer type: a golgi analysis in the hippocampal region. Brain Res 268:249–254

    PubMed  CAS  Google Scholar 

  196. Rabano A, Jimenez-Huete A, Acevedo B, Calero M, Ghiso J, Valdes I, Gavilondo J, Frangione B, Mendez E (2005) Diversity of senile plaques in Alzheimer’s disease as revealed by a new monoclonal antibody that recognizes an internal sequence of the Abeta peptide. Curr Alzheimer Res 2:409–417

    PubMed  CAS  Google Scholar 

  197. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jaggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Holscher C, Mathews PM, Jucker M (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940–946

    PubMed  CAS  Google Scholar 

  198. Reilly JF, Games D, Rydel RE, Freedman S, Schenk D, Young WG, Morrison JH, Bloom FE (2003) Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci USA 100:4837–4842

    PubMed  CAS  Google Scholar 

  199. Rifenburg RP, Perry G (1995) Dystrophic neurites define diffuse as well as core-containing senile plaques in Alzheimer’s disease. Neurodegeneration 4:235–237

    PubMed  CAS  Google Scholar 

  200. Roberts GW, Allsop D, Bruton C (1990) The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 53:373–378

    PubMed  CAS  Google Scholar 

  201. Roy S, Zhang B, Lee VM, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol (Berl) 109:5–13

    Google Scholar 

  202. Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin ZH, Ravikumar B, Stefanis L, Tolkovsky A (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1:11–22

    PubMed  CAS  Google Scholar 

  203. Rui Y, Tiwari P, Xie Z, Zheng JQ (2006) Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J Neurosci 26:10480–10487

    PubMed  CAS  Google Scholar 

  204. Sasaki A, Shoji M, Harigaya Y, Kawarabayashi T, Ikeda M, Naito M, Matsubara E, Abe K, Nakazato Y (2002) Amyloid cored plaques in Tg2576 transgenic mice are characterized by giant plaques, slightly activated microglia, and the lack of paired helical filament-typed, dystrophic neurites. Virchows Arch 441:358–367

    PubMed  CAS  Google Scholar 

  205. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    PubMed  CAS  Google Scholar 

  206. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    PubMed  CAS  Google Scholar 

  207. Schlaepfer WW (1977) Structural alterations of peripheral nerve induced by the calcium ionophore A23187. Brain Res 136:1–9

    PubMed  CAS  Google Scholar 

  208. Schwarze-Eicker K, Keyvani K, Gortz N, Westaway D, Sachser N, Paulus W (2005) Prion protein (PrPc) promotes beta-amyloid plaque formation. Neurobiol Aging 26:1177–1182

    PubMed  CAS  Google Scholar 

  209. Selkoe DJ (1996) Amyloid beta-protein and the genetics of Alzheimer’s disease. J Biol Chem 271:18295–18298

    PubMed  CAS  Google Scholar 

  210. Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease: hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann NY Acad Sci 924:17–25

    Article  PubMed  CAS  Google Scholar 

  211. Selkoe DJ (2006) The ups and downs of Abeta. Nat Med 12:758–759

    PubMed  CAS  Google Scholar 

  212. Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235:873–877

    PubMed  CAS  Google Scholar 

  213. Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci 22:9794–9799

    PubMed  CAS  Google Scholar 

  214. Shin RW, Ogino K, Kondo A, Saido TC, Trojanowski JQ, Kitamoto T, Tateishi J (1997) Amyloid beta-protein (Abeta) 1–40 but not Abeta1–42 contributes to the experimental formation of Alzheimer disease amyloid fibrils in rat brain. J Neurosci 17:8187–8193

    PubMed  CAS  Google Scholar 

  215. Shoji M, Kawarabayashi T, Matsubara E, Ikeda M, Ishiguro K, Harigaya Y, Okamoto K (2000) Distribution of amyloid beta protein precursor in the Alzheimer’s disease brain. Psychiatry Clin Neurosci 54:45–54

    PubMed  CAS  Google Scholar 

  216. Sipos E, Kurunczi A, Kasza A, Horvath J, Felszeghy K, Laroche S, Toldi J, Parducz A, Penke B, Penke Z (2007) beta-Amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease. Neuroscience 147:28–36

    PubMed  CAS  Google Scholar 

  217. Small SA, Gandy S (2006) Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis. Neuron 52:15–31

    PubMed  CAS  Google Scholar 

  218. Smith DH, Chen X-H, Iwata A, Graham DI (2003) Amyloid β accumulation in axons after traumatic brain injury in humans. J Neurosurg 98:1072–1077

    Article  PubMed  CAS  Google Scholar 

  219. Smith DH, Chen X-H, Nonaka M, Trojanowski JQ, Lee VM-Y, Saatman KE, Leoni MJ, Wolf JA, Meaney DF (1999) Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58:982–992

    PubMed  CAS  Google Scholar 

  220. Song M-S, Saavedra L, Posse de Chaves EI (2006) Apoptosis is secondary to non-apoptotic axonal degeneration in neurons exposed to Aβ in distal axons. Neurobiol Aging 27:1224–1238

    PubMed  CAS  Google Scholar 

  221. Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437

    PubMed  Google Scholar 

  222. Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287

    PubMed  CAS  Google Scholar 

  223. Stalder M, Deller T, Staufenbiel M, Jucker M (2001) 3D-reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid. Neurobiol Aging 22:427–434

    PubMed  CAS  Google Scholar 

  224. Stalder M, Phinney A, Probst A, Sommer B, Staufenbiel M, Jucker M (1999) Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am J Pathol 154:1673–1684

    PubMed  CAS  Google Scholar 

  225. Steiner H, Revesz T, Neumann M, Romig H, Grim MG, Pesold B, Kretzschmar HA, Hardy J, Holton JL, Baumeister R, Houlden H, Haass C (2001) A pathogenic presenilin-1 deletion causes abberrant Abeta 42 production in the absence of congophilic amyloid plaques. J Biol Chem 276:7233–7239

    PubMed  CAS  Google Scholar 

  226. Stokin GB, Goldstein LSB (2006) Axonal transport and Alzheimer’s disease. Ann Rev Biochem 75:607–627

    PubMed  CAS  Google Scholar 

  227. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LSB (2005) Axonopathy and transport deficits in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    PubMed  CAS  Google Scholar 

  228. Stoltzner SE, Grenfell TJ, Mori C, Wisniewski KE, Wisniewski TM, Selkoe DJ, Lemere CA (2000) Temporal accrual of complement proteins in amyloid plaques in Down’s syndrome with Alzheimer’s disease. Am J Pathol 156:489–499

    PubMed  CAS  Google Scholar 

  229. Stone JR, Singleton RH, Povlishock JT (2001) Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp Neurol 172:320–331

    PubMed  CAS  Google Scholar 

  230. Struble RG, Price DL, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361:267–275

    PubMed  CAS  Google Scholar 

  231. Styren SD, Hamilton RL, Styren GC, Klunk WE (2000) X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J Histochem Cytochem 48:1223–1232

    PubMed  CAS  Google Scholar 

  232. Su JH, Cummings BJ, Cotman CW (1998) Plaque biogenesis in brain aging and Alzheimer’s disease. II. Progressive transformation and developmental sequence of dystrophic neurites. Acta Neuropathol (Berl) 96:463–471

    CAS  Google Scholar 

  233. Suzuki K, Terry RD (1967) Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s disease presenile dementia. Acta Neuropathol 8:276–284

    PubMed  CAS  Google Scholar 

  234. Tagliavini F, Giaccone G, Frangione B, Bugiani O (1988) Preamyloid deposits in the cerebral cortex of patients with Alzheimer’s disease and nondemented individuals. Neurosci Lett 93:191–196

    PubMed  CAS  Google Scholar 

  235. Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599

    PubMed  CAS  Google Scholar 

  236. Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879

    PubMed  CAS  Google Scholar 

  237. Takeuchi A, Irizarry MC, Duff K, Saido TC, Hsiao Ashe K, Hasegawa M, Mann DM, Hyman BT, Iwatsubo T (2000) Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 157:331–339

    PubMed  CAS  Google Scholar 

  238. Terry RD, Gonatas NK, Weiss M (1964) Ultrastructural studies in Alzheimer’s presenile dementia. Am J Pathol 44:269–297

    PubMed  CAS  Google Scholar 

  239. Terry RD, Wisniewski HM (1970) The ultrastructure of the neurofibrillary tangle and the senile plaque. In: Wolstenholme GEW, O’Connor M (eds) Alzheimer’s disease and related conditions. J & A Churchill, London pp 145–168

    Google Scholar 

  240. Terry RD, Wisniewski HM (1972) Ultrastructure of senile dementia and of experimental analogs. In: Gaitz CM (ed) Aging and the brain. Plenum, New York, pp 89–116

    Google Scholar 

  241. Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowledge Environ 2006(6):re1

    PubMed  Google Scholar 

  242. Thal DR, Capetillo-Zarate E, Schultz C, Rub U, Saido TC, Yamaguchi H, Haass C, Griffin WS, Del Tredici K, Braak H, Ghebremedhin E (2005) Apolipoprotein E co-localizes with newly formed amyloid beta-protein (Abeta) deposits lacking immunoreactivity against N-terminal epitopes of Abeta in a genotype-dependent manner. Acta Neuropathol (Berl) 110:459–471

    CAS  Google Scholar 

  243. Thal DR, Hartig W, Schober R (1999) Diffuse plaques in the molecular layer show intracellular Abeta(8–17)-immunoreactive deposits in subpial astrocytes. Clin Neuropathol 18:226–231

    PubMed  CAS  Google Scholar 

  244. Thal DR, Rub U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak H (2000) Sequence of Abeta-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748

    PubMed  CAS  Google Scholar 

  245. Thal DR, Sassin I, Schultz C, Haass C, Braak E, Braak H (1999) Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. J Neuropathol Exp Neurol 58:210–216

    PubMed  CAS  Google Scholar 

  246. Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E (2000) Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol (Berl) 100:608–617

    CAS  Google Scholar 

  247. Tienari PJ, Ida N, Ikonen E, Simons M, Weidemann A, Multhaup G, Masters CL, Dotti CG, Beyreuther K (1997) Intracellular and secreted Alzheimer beta-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc Natl Acad Sci USA 94:4125–4130

    PubMed  CAS  Google Scholar 

  248. Tomidokoro Y, Harigaya Y, Matsubara E, Ikeda M, Kawarabayashi T, Shirao T, Ishiguro K, Okamoto K, Younkin SG, Shoji M (2001) Brain Abeta amyloidosis in APPsw mice induces accumulation of presenilin-1 and tau. J Pathol 194:500–506

    PubMed  CAS  Google Scholar 

  249. Tomidokoro Y, Lashley T, Rostagno A, Neubert TA, Bojsen-Moller M, Braendgaard H, Plant G, Holton J, Frangione B, Revesz T, Ghiso J (2005) Familial Danish dementia: co-existence of Danish and Alzheimer amyloid subunits (ADan AND A{beta}) in the absence of compact plaques. J Biol Chem 280:36883–36894

    PubMed  CAS  Google Scholar 

  250. Tsai J, Grutzendler J, Duff K, Gan W-B (2004) Fibrillar amyloid deposition leads to synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    PubMed  CAS  Google Scholar 

  251. Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons: electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol 84:513–530

    PubMed  CAS  Google Scholar 

  252. Uno H, Alsum PB, Dong S, Richardson R, Zimbric ML, Thieme CS, Houser WD (1996) Cerebral amyloid angiopathy and plaques, and visceral amyloidosis in aged macaques. Neurobiol Aging 17:275–281

    PubMed  CAS  Google Scholar 

  253. van Groen T, Kiliaan AJ, Kadish I (2006) Deposition of mouse amyloid beta in human APP/PS1 double and single AD model transgenic mice. Neurobiol Dis 23:653–662

    PubMed  Google Scholar 

  254. van Groen T, Liu L, Ikonen S, Kadish I (2003) Diffuse amyloid deposition, but not plaque number, is reduced in amyloid precursor protein/presenilin 1 double-transgenic mice by pathway lesions. Neuroscience 119:1185–1197

    PubMed  Google Scholar 

  255. van Groen T, Puurunen K, Maki HM, Sivenius J, Jolkkonen J (2005) Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 36:1551–1556

    PubMed  Google Scholar 

  256. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    PubMed  CAS  Google Scholar 

  257. Vaughan DW, Peters A (1981) The structure of neuritic plaques in the cerebral cortex of aged rats. J Neuropathol Exp Neurol 40:472–487

    PubMed  CAS  Google Scholar 

  258. Vickers JC (1997) A cellular mechanism for the neuronal changes underlying Alzheimer’s disease. Neuroscience 78:629–639

    PubMed  CAS  Google Scholar 

  259. Vickers JC, Chin D, Edwards AM, Sampson V, Harper C, Morrison J (1996) Dystrophic neurite formation associated with age-related beta amyloid deposition in the neocortex: clues to the genesis of neurofibrillary pathology. Exp Neurol 141:1–11

    PubMed  CAS  Google Scholar 

  260. Vinters HV, Pardridge WM (1986) The blood-brain barrier in Alzheimer’s disease. Can J Neurol Sci 13(4 Suppl):446–448

    PubMed  CAS  Google Scholar 

  261. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid β-protein fibrillogenesis: structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    PubMed  CAS  Google Scholar 

  262. Walsh DM, Selkoe DJ (2007) A beta oligomers––a decade of discovery. J Neurochem 101:1172–1184

    PubMed  CAS  Google Scholar 

  263. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839

    PubMed  CAS  Google Scholar 

  264. Wang HY, D’Andrea MR, Nagele RG (2002) Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells. Neurobiol Aging 23:213–223

    PubMed  CAS  Google Scholar 

  265. Wang D, Munoz DG (1995) Qualitative and quantitative differences in senile plaque dystrophic neurites of Alzheimer’s disease and normal aged brain. J Neuropathol Exp Neurol 54:548–556

    PubMed  CAS  Google Scholar 

  266. Waxman SG, Black JA, Ransom BR, Stys PK (1993) Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Res 614:137–145

    PubMed  CAS  Google Scholar 

  267. Webster HD (1962) Transient, focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration. J Cell Biol 12:361–383

    PubMed  CAS  Google Scholar 

  268. Wegiel J, Wang KC, Imaki H, Rubenstein R, Wronska A, Osuchowski M, Lipinski WJ, Walker LC, LeVine H (2001) The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APPsw mice. Neurobiol Aging 22:49–61

    PubMed  CAS  Google Scholar 

  269. Wegiel J, Wang KC, Tarnawski M, Lach B (2000) Microglia cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plague degradation. Acta Neuropathol (Berl) 100:356–364

    CAS  Google Scholar 

  270. Wegiel J, Wisniewski HM (1990) The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol (Berl) 81:116–124

    CAS  Google Scholar 

  271. Wegiel J, Wisniewski HM (1999) β-Amyloidosis in Alzheimer’s disease. In: de Leon MJ (ed) An atlas of Alzheimer’s disease. Parthenon Publishing Group, New York, pp 89–107

    Google Scholar 

  272. Wegiel J, Wisniewski HM, Dziewiatkowski J, Tarnawski M, Nowakowski J, Dziewiatkowska A, Soltysiak Z (1995) The origin of amyloid in cerebral vessels of aged dogs. Brain Res 705:225–234

    PubMed  CAS  Google Scholar 

  273. Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E, Esler WP, Maggio JE, Mantyh PW (1998) Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci 18:2161–2173

    PubMed  CAS  Google Scholar 

  274. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733

    PubMed  CAS  Google Scholar 

  275. Westermark P (2005) Aspects on human amyloid forms and their fibril polypeptides. FEBS J 272:5942–5949

    PubMed  CAS  Google Scholar 

  276. Wilson CA, Doms RW, Lee VM (1999) Intracellular APP processing and Abeta production in Alzheimer disease. J Neuropathol Exp Neurol 58:787–794

    PubMed  CAS  Google Scholar 

  277. Winkler J, Connor DJ, Frautschy SA, Behl C, Waite JJ, Cole GM, Thal LJ (1994) Lack of long-term effects after beta-amyloid protein injections in rat brain. Neurobiol Aging 15:601–607

    PubMed  CAS  Google Scholar 

  278. Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306:116–120

    PubMed  CAS  Google Scholar 

  279. Wirths O, Multhaup G, Bayer TA (2004) A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide––the first step of a fatal cascade. J Neurochem 91:513–520

    PubMed  CAS  Google Scholar 

  280. Wirths O, Weis J, Szczygielski J, Multhaup G, Bayer TA (2006) Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease. Acta Neuropathol (Berl) 111:312–319

    CAS  Google Scholar 

  281. Wisniewski HM, Bancher C, Barcikowski M, Wen GY, Currie J (1989) Spectrum of morphological appearance of amyloid deposits in Alzheimer’s disease. Acta Neuropathol 78:337–347

    PubMed  CAS  Google Scholar 

  282. Wisniewski HM, Ghetti B, Terry RD (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J Neuropathol Exp Neurol 32:566–584

    Article  PubMed  CAS  Google Scholar 

  283. Wisniewski HM, Terry RD (1973) Reexamination of the pathogenesis of the senile plaque. In: Zimmerman HM (ed) Progress in neuropathology. Vol. II. Grune & Stratton, New York, pp 1–26

    Google Scholar 

  284. Wisniewski HM, Wegiel J, Wang KC, Kujawa M, Lach B (1989) Ultrastructural studies of the cells forming amyloid fibers in classical plaques. Can J Neurol Sci 16(4 Suppl):535–542

    PubMed  CAS  Google Scholar 

  285. Wisniewski T, Lalowski M, Bobik M, Russell M, Strosznajder J, Frangione B (1996) Amyloid beta 1–42 deposits do not lead to Alzheimer’s neuritic plaques in aged dogs. Biochem J 313:575–580

    PubMed  CAS  Google Scholar 

  286. Wolf DS, Gearing M, Snowdon DA, Mori H, Markesbery WR, Mirra SS (1999) Progression of regional neuropathology in Alzheimer disease and normal elderly: findings from the Nun study. Alzheimer Dis Assoc Disord 13:226–231

    PubMed  CAS  Google Scholar 

  287. Woodhouse A, West AK, Chuckowree JA, Vickers JC, Dickson TC (2005) Does beta-amyloid plaque formation cause structural injury to neuronal processes? Neurotox Res 7:5–15

    Article  PubMed  CAS  Google Scholar 

  288. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9:453–457

    PubMed  CAS  Google Scholar 

  289. Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, Masliah E (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 99:10837–10842

    PubMed  CAS  Google Scholar 

  290. Yamaguchi H, Sugihara S, Ogawa A, Saido TC, Ihara Y (1998) Diffuse plaques associated with astroglial amyloid beta protein, possibly showing a disappearing stage of senile plaques. Acta Neuropathol (Berl) 95:217–222

    CAS  Google Scholar 

  291. Yamaguchi H, Hirai S, Shoji M, Harigaya Y, Okamoto Y, Nakazato Y (1989) Alzheimer type dementia: diffuse type of senile plaques demonstrated by beta protein immunostaining. Prog Clin Biol Res 317:467–474

    PubMed  CAS  Google Scholar 

  292. Yamaguchi H, Nakazato Y, Shoji M, Takatama M, Hirai S (1991) Ultrastructure of diffuse plaques in senile dementia of the Alzheimer type: comparison with primitive plaques. Acta Neuropathol 82:13–20

    PubMed  CAS  Google Scholar 

  293. Yan SD, Xiong W-C, Stern DM (2006) Mitochondrial amyloid-beta peptide: pathogenesis or late-phase development. J Alz Dis 9:127–137

    Google Scholar 

  294. Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG (1998) Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1–42 pathogenesis. J Neurosci Res 52:691–698

    PubMed  CAS  Google Scholar 

  295. Yasuhara O, Kawamata T, Aimi Y, McGeer EG, McGeer PL (1994) Two types of dystrophic neurites in senile plaques of Alzheimer disease and elderly non-demented cases. Neurosci Lett 171:73–76

    PubMed  CAS  Google Scholar 

  296. Ye W, Zhou JN, Hu XY, Liu JW, He JH, Tang XW (2003) Reconstruction of the three-dimensional structure of senile plaques in Alzheimer disease. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:449–453

    Google Scholar 

  297. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy––a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98

    PubMed  CAS  Google Scholar 

  298. Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36:2531–2540

    PubMed  CAS  Google Scholar 

  299. Zhao J, Fu Y, Yasvoina M, Shao P, Hitt B, O’Connor T, Logan S, Maus E, Citron M, Berry R, Binder L, Vassar R (2007) β-Site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci 27:3639–3649

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Alan Peters for providing the aged monkey tissue used for Figs. 1 and 3, and to Marcia Feinberg for electron microscopy. Thanks also to Helen Barbas, Alan Peters, and the reviewers for many helpful suggestions on earlier versions of the manuscript.

This work was supported by grants from National Institute of Mental Health (RO1 MH057414) and National Institute of Neurological Disorders and Stroke (RO1 NS024760), from the National Institute on Aging (P01 AG00001), and from the Dudley Allen Sargent Research Fund, Boston University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Fiala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiala, J.C. Mechanisms of amyloid plaque pathogenesis. Acta Neuropathol 114, 551–571 (2007). https://doi.org/10.1007/s00401-007-0284-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0284-8

Keywords

Navigation