Skip to main content
Log in

Multiple interval thixotropic test (miTT)—an advanced tool for the rheological characterization of emulsions and other colloidal systems

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In the last years, the 3iTT protocol—a dynamic-mechanical test (DMT) at low deformation and constant frequency, followed by a start-up flow (SUF) at constant shear-rate, and a DMT—was developed as an alternative to check for changes in material behavior, which was extended to form the multiple interval thixotropic test protocol (miTT), differing in modifying the shear rates systematically. The results of this test routine are a viscosity function η(\(\dot{\gamma }\)) with increasing and decreasing \(\dot{\gamma }\) and the dependence of G’ and G” on \(\dot{\gamma }\) previous test. More importantly, the G’ and G” are strongly influenced by the previously applied shear rate. While regular emulsions show a decrease of G’ and G” upon a higher shear rate \(\dot{\gamma }\) in the previous shear step, the pickering emulsions with graphene oxide show an increase. In both cases, the change is approximately reversible. The changes in G’ and G” correlate well with the emulgel composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barnes HA (1994) Rheology of emulsions - a review. Colloids and Surfaces a-Physicochemical and Engineering Aspects 91:89–95

    CAS  Google Scholar 

  • Bazmi A, Launay B, Cuvelier G, Relkin P (2008) Impact of crystalline milk fat on rheological properties of ice cream mix emulsions during aging time at 4C. J Texture Stud 39(4):309–325

    Article  Google Scholar 

  • Bi CH, Yan ZM, Wang PL, Alkhatib A, Zhu JY, Zou HC, Sun DY, Zhu XD, Gao F, Shi WT, Huang ZG (2020) Effect of high pressure homogenization treatment on the rheological properties of citrus peel fiber/corn oil emulsion. J Sci Food Agric 100(9):3658–3665

    Article  CAS  Google Scholar 

  • Brummer R, Hamer G (1997) Rheological methods to characterize cosmetics. Applied Rheology 7(1):19–24

    Article  CAS  Google Scholar 

  • Cloitre M, Bonnecaze RT (2017) A review on wall slip in high solid dispersions. Rheol Acta 56(3):283–305

    Article  CAS  Google Scholar 

  • Corker A, Ng HCH, Poole RJ, Garcia-Tunon E (2019) 3D printing with 2D colloids: designing rheology protocols to predict "printability’ of soft-materials. Soft Matter 15(6):1444–1456

    Article  CAS  Google Scholar 

  • Datta A, Tanmay VS, Tan GX, Reynolds GW, Jamadagni SN, Larson RG (2020) Characterizing the rheology, slip, and velocity profiles of lamellar gel networks. J Rheol 64(4):851–862

    Article  CAS  Google Scholar 

  • Demir MK, Kutlu G, Yilmaz MT (2017) Steady, dynamic and structural deformation (three interval thixotropy test) characteristics of gluten-free Tarhana soup prepared with different concentrations of quinoa flour. J Texture Stud 48(2):95–102

    Article  Google Scholar 

  • Derkach SR (2009) Rheology of emulsions. Adv Coll Interface Sci 151(1–2):1–23

    Article  CAS  Google Scholar 

  • Derkatch SR, Levachov SM, Kuhkushkina AN, Novosyolova NV, Kharlov AE, Matveenko VN (2007) Rheological properties of concentrated emulsions stabilized by globular protein in the presence of nonionic surfactant. Colloids and Surfaces a-Physicochemical and Engineering Aspects 298(3):225–234

    CAS  Google Scholar 

  • Deyrail Y, El Mesri Z, Huneault M, Zeghloul A, Bousmina M (2007) Analysis of morphology development in immiscible Newtonian polymer mixtures during shear flow. J Rheol 51(5):781–797

    Article  CAS  Google Scholar 

  • Eduardo F, Marques OR (1999) Vesicle formation and general phase behavior in the catanionic mixture SDS-DDAB-Water. The Cationic-Rich Side J Phys Chem 103:8353

    Google Scholar 

  • Ewoldt RH, Winter P, Maxey J, Mckinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49(2):191–212

    Article  CAS  Google Scholar 

  • Faroughi SA, Huber C (2015) A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number. Rheol Acta 54(2):85–108

    Article  CAS  Google Scholar 

  • Fernandez P, Barreto G, Carballo J, Colmenero FJ (1996) Rheological changes during thermal processing of low-fat meat emulsions formulated with different texture modifying ingredients. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung 203(3):252–254

    Article  CAS  Google Scholar 

  • Foudazi R, Masalova I, Malkin AY (2012) The rheology of binary mixtures of highly concentrated emulsions: Effect of droplet size ratio. J Rheol 56(5):1299–1314

    Article  CAS  Google Scholar 

  • Friberg SE, Hasinovic H, Yin Q, Zhang ZQ, Patel R (1999) The system water-ethanol-didodecyldimethylammonium bromide. Phase equilibria and vapor pressures. Colloids and Surfaces a-Physicochemical and Engineering Aspects 156 (1–3): 145–156.

  • Garcia-Tunon E, Feilden E, Zheng H, D’elia E, Leong A, Saiz E (2017) Graphene Oxide: An All-in-One Processing Additive for 3D Printing. ACS Appl Mater Interfaces 9(38):32977–32989

    Article  CAS  Google Scholar 

  • Harrison VGW (1950) Rheology of Emulsions. Nature 165(4188):182–184

    Article  Google Scholar 

  • He YB, Jiang GC, Deng ZQ, Liu F, Peng SL, Ni XX, Shi YW, Cui WG (2018) Polyhydroxy gemini surfactant as a mechano-responsive rheology modifier for inverted emulsion drilling fluid. RSC Adv 8(1):342–353

    Article  CAS  Google Scholar 

  • Heindl M, Sommer MK, Munstedt H (2004) Morphology development in polystyrene/polyethylene blends during uniaxial elongational flow. Rheol Acta 44(1):55–70

    Article  CAS  Google Scholar 

  • Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang JX (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132(23):8180–8186

    Article  CAS  Google Scholar 

  • Lafforgue O, Seyssiecq I, Poncet S, Favier J (2018) Rheological properties of synthetic mucus for airway clearance. J Biomed Mater Res A 106(2):386–396

    Article  CAS  Google Scholar 

  • Lagaly G, Reese M, Abend S (1999) Smectites as colloidal stabilizers of emulsions II. Rheological properties of smectite-laden emulsions. Applied Clay Science 14 (5–6): 279–298.

  • Lauger J, Wollny K, Huck S (2002) Direct Strain Oscillation: a new oscillatory method enabling measurements at very small shear stresses and strains. Rheol Acta 41(4):356–361

    Article  Google Scholar 

  • Lequeux F (1998) Emulsion rheology. Curr Opin Colloid Interface Sci 3(4):408–411

    Article  CAS  Google Scholar 

  • Li Z, Li D, Chen Y, Cui H (2018) Study of the thixotropic behaviors of ferrofluids. Soft Matter 14(19):3858–3869

    Article  CAS  Google Scholar 

  • Liu YW, Zhang WJ, Wang KY, Bao YL, Mac Regenstein J, Zhou P (2019) Fabrication of gel-like emulsions with whey protein isolate using microfluidization: rheological properties and 3D printing performance. Food Bioprocess Technol 12(12):1967–1979

    Article  CAS  Google Scholar 

  • Malkin AY, Kulichikhin VG (2015) Structure and rheology of highly concentrated emulsions: a modern look. Russ Chem Rev 84(8):803–825

    Article  CAS  Google Scholar 

  • Muller-Fischer N, Tobler P, Dressler M, Fischer P, Windhab EJ (2008) Single bubble deformation and breakup in simple shear flow. Exp Fluids 45(5):917–926

    Article  Google Scholar 

  • Niknam R, Ghanbarzadeh B, Ayaseh A, Rezagholi F (2018) The effects of Plantago major seed gum on steady and dynamic oscillatory shear rheology of sunflower oil-in-water emulsions. J Texture Stud 49(5):536–547

    Article  Google Scholar 

  • Otsubo Y, Prudhomme RK (1994) Rheology of Oil-in-Water Emulsions. Rheol Acta 33(1):29–37

    Article  CAS  Google Scholar 

  • Owens CE, Hart AJ, Mckinley GH (2020) Improved rheometry of yield stress fluids using bespoke fractal 3D printed vanes. J Rheol 64(3):643–662

    Article  CAS  Google Scholar 

  • Pal R (1993) Rheological Behavior of Surfactant-Flocculated Water-in-Oil Emulsions. Colloids and Surfaces a-Physicochemical and Engineering Aspects 71(2):173–185

    CAS  Google Scholar 

  • Pal R (2011) Rheology of simple and multiple emulsions. Curr Opin Colloid Interface Sci 16(1):41–60

    Article  CAS  Google Scholar 

  • Palierne JF (1990) Linear Rheology of Viscoelastic Emulsions with Interfacial-Tension. Rheol Acta 29(3):204–214

    Article  CAS  Google Scholar 

  • Ramachandran A, Tsigklifis K, Roy A, Leal G (2012) The effect of interfacial slip on the dynamics of a drop in flow: Part I. Stretching, relaxation, and breakup. Journal of Rheology 56 (1): 45–97.

  • Reinheimer K, Grosso M, Wilhelm M (2011) Fourier Transform Rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions. J Colloid Interface Sci 360(2):818–825

    Article  CAS  Google Scholar 

  • Reinheimer K, Grosso M, Hetzel F, Kubel J, Wilhelm M (2012) Fourier transform rheology as an innovative morphological characterization technique for the emulsion volume average radius and its distribution. J Colloid Interface Sci 380:201–212

    Article  CAS  Google Scholar 

  • Rodd LE, Scott TP, Cooper-White JJ, Mckinley GH (2005) Capillary break-up rheometry of low-viscosity elastic fluids. Applied Rheology 15(1):12–27

    Article  CAS  Google Scholar 

  • Romero N, Cardenas A, Rivas H (2000) Creep compliance-time behavior and stability of bitumen in water emulsions. J Rheol 44(6):1247–1262

    Article  CAS  Google Scholar 

  • Santipanichwong R, Suphantharika M (2009) Influence of different beta-glucans on the physical and rheological properties of egg yolk stabilized oil-in-water emulsions. Food Hydrocolloids 23(5):1279–1287

    Article  CAS  Google Scholar 

  • Siahcheshm P, Goharpey F, Foudazi R (2018) Droplet retraction in the presence of nanoparticles with different surface modifications. Rheol Acta 57(11):729–743

    Article  CAS  Google Scholar 

  • Stranzinger M, Feigl K, Windhab E (2001) Non-Newtonian flow behaviour in narrow annular gap reactors. Chem Eng Sci 56(11):3347–3363

    Article  CAS  Google Scholar 

  • Tadros T (2004) Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Coll Interface Sci 108:227–258

    Article  Google Scholar 

  • Tao FF, Auhl D, Baudouin AC, Stadler FJ, Bailly C (2013) Influence of Multiwall Carbon Nanotubes Trapped at the Interface of an Immiscible Polymer Blend on Interfacial Tension. Macromol Chem Phys 214(3):350–360

    Article  CAS  Google Scholar 

  • Teipel U, Aksel N (2003) Rheologically identical behavior of emulsions and suspensions in steady shear flow: Dimensional analysis and experimental evidence. Chem Eng Technol 26(9):947–951

    Article  Google Scholar 

  • Teixeira GL, Zuge LCB, Silveira JLM, Scheer AD, Ribani RH (2016) The Impact of Polyoxyethylene sorbitan surfactants in the microstructure and rheological behaviour of emulsions made with melted fat from Cupuassu (Theobroma grandiflorum). J Surfactants Deterg 19(4):725–738

    Article  CAS  Google Scholar 

  • Thareja P, Velankar S (2008) Rheology of immiscible blends with particle-induced drop clusters. Rheol Acta 47(2):189–200

    Article  CAS  Google Scholar 

  • Thickett SC, Zetterlund PB (2013) Functionalization of graphene oxide for the production of novel graphene-based polymeric and colloidal materials. Curr Org Chem 17(9):956–974

    Article  CAS  Google Scholar 

  • Thickett SC, Zetterlund PB (2015) Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: influence of oil phase polarity. J Colloid Interface Sci 442:67–74

    Article  CAS  Google Scholar 

  • Van Hooghten R, Blair VE, Vananroye A, Schofield AB, Vermant J, Thijssen JHJ (2017) Interfacial rheology of sterically stabilized colloids at liquid interfaces and its effect on the stability of pickering emulsions. Langmuir 33(17):4107–4118

    Article  CAS  Google Scholar 

  • Wei XJ, Li D, Jiang W, Gu ZM, Wang XJ, Zhang ZX, Sun ZZ (2015) 3D printable graphene composite. Sci Rep 5:7

    Google Scholar 

  • Yan YH, Pal R, Masliyah J (1991) Rheology of oil in water emulsions with added kaolinite clay. Ind Eng Chem Res 30(8):1931–1936

    Article  CAS  Google Scholar 

  • Yang K, Liu ZW, Wang J, Yu W (2018) Stress bifurcation in large amplitude oscillatory shear of yield stress fluids. J Rheol 62(1):89–106

    Article  CAS  Google Scholar 

  • Yu W, Bousmina M, Grmela M, Palierne JF, Zhou CX (2002) Quantitative relationship between rheology and morphology in emulsions. J Rheol 46(6):1381–1399

    Article  CAS  Google Scholar 

  • Yu W, Wang P, Zhou CX (2009) General stress decomposition in nonlinear oscillatory shear flow. J Rheol 53(1):215–238

    Article  CAS  Google Scholar 

  • Zhang J, Xu JY, Gao MC, Wu YX (2013) Apparent viscosity of oil-water (coarse) emulsion and its rheological characterization during the phase inversion region. J Dispersion Sci Technol 34(8):1148–1160

    Article  CAS  Google Scholar 

  • Zhu C, Han TY, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GM Zhu and WQ Li would like to acknowledge financial support from the National Science Foundation of China (Grant No. 51978410).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian J. Stadler or Guangming Zhu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1676 kb)

Appendix

Appendix

Comments on applying the miTT protocol

In general, a fresh sample was used for the miTT protocol, which was not used for further experiments (except polarized optical microscopy). The results for the GO emulgel suggest that it would be possible to reuse the samples for other test profiles as the miTT protocol does not change the rheological properties very much, while this is not the case for the CNF emulgels. Therefore, it is suggested that utmost caution should be exercised that the samples’ rheological properties are not changed too much when reusing the samples for other setups after miTT or using previously strongly sheared samples before starting miTT.

The best way would be to compare the G’(\(\dot{\gamma }\) prev) for rising and decreasing shear rate branch. If the differences are quite severe, such as in Fig. 8a (CNF emulgels), it would be better not to use the sample for further rheological tests; if the differences are minimal like in Fig. 8b (GO emulgels), and the stability of the system is sufficient (e.g., the water evaporation does not influence the results), using the sample for other purposes should be unproblematic.

More details are given in supplementary information along with the evaluation script for the miTT test (for use at your own risk).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadler, F.J., Cui, S., Hashmi, S. et al. Multiple interval thixotropic test (miTT)—an advanced tool for the rheological characterization of emulsions and other colloidal systems. Rheol Acta 61, 229–242 (2022). https://doi.org/10.1007/s00397-021-01323-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-021-01323-y

Keywords

Navigation