Skip to main content
Log in

Rheology of SiO2/(acrylic polymer/epoxy) suspensions. II. Nonlinear stress relaxation

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Large deformation, nonlinear stress relaxation modulus G(t, γ) was examined for the SiO2 suspensions in a blend of acrylic polymer (AP) and epoxy (EP) with various SiO2 volume fractions (ϕ) at various temperatures (T). The AP/EP contained 70 vol.% of EP. At ϕ ≤ 30 vol.%, the SiO2/(AP/EP) suspensions behaved as a viscoelastic liquid, and the time-strain separability, G(t, γ) = G(t)h(γ), was applicable at long time. The h(γ) of the suspensions was more strongly dependent on γ than that of the matrix (AP/EP). At ϕ = 35 vol.% and T = 100°C, and ϕ ≥ 40 vol.%, the time-strain separability was not applicable. The suspensions exhibited a critical gel behavior at ϕ = 35 vol.% and T = 100°C characterized with a power law relationship between G(t) and t; G(t) ∝ t  − n. The relaxation exponent n was estimated to be about 0.45, which was in good agreement with the result of linear dynamic viscoelasticity reported previously. G(t, γ) also could be approximately expressed by the relation \(G(t,\gamma) \propto t^{-n^{\prime}}\) at ϕ = 40 vol.%. The exponent n increased with increasing γ. This nonlinear stress relaxation behavior is attributable to strain-induced disruption of the network structure formed by the SiO2 particles therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amari T, Watanabe K (1983) Rheological properties of disperse systems of pigment. Poly Eng Rev 3:277–321

    CAS  Google Scholar 

  • Aoki Y (2007) Rheological characterization of carbon black/varnish suspensions. Colloids Surf A 308:79–86

    Article  CAS  Google Scholar 

  • Aoki Y, Watanabe H (2004) Rheology of carbon black suspensions. III. Sol–gel transition System. Rheol Acta 43:390–395

    Article  CAS  Google Scholar 

  • Aoki Y, Hatano A, Tanaka T, Watanabe H (2001) Nonlinear stress relaxation of ABS polymer in the molten state. Macromolecules 32:3100–3107

    Article  ADS  Google Scholar 

  • Aoki Y, Hatano A, Watanabe H (2003) Rheology of carbon black suspensions. I. Three types of viscoelastic behavior. Rheol Acta 42:209–216

    Article  CAS  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31:683–697

    Article  CAS  ADS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, London

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Grant MC, Russel WB (1993) Volume fraction dependence of elastic moduli and transition temperatures colloidal silica gels. Phys Rev E 47:2606–2614

    Article  CAS  ADS  Google Scholar 

  • Guth E, Gold O (1938) On the hydrodynamic theory of the viscosity of suspension. Phys Rev 53:322

    CAS  Google Scholar 

  • In M, Prud’homme PK (1993) Fourier transform mechanically spectroscopy of the sol–gel transition in zirconium alkoxide ceramic gels. Rheol Acta 32:556–565

    Article  CAS  Google Scholar 

  • Isaki T, Takahashi M, Urakawa O (2003) Biaxial damping function of entangled monodisperse polystyrene melts: comparison with the Mead–Larson–Doi model. J Rheol 47:1201–1210

    Article  CAS  ADS  Google Scholar 

  • Jokinen M, Gyorvary E, Rosenholm JB (1998) Viscoelastic characterization of three different sol–gel derived silica gels. Colloids Surf A 141:205–211

    Article  CAS  Google Scholar 

  • Onogi S, Matsumoto T (1981) Rheological properties of polymer solutions and melts containing suspended particles. Polym Eng Rev 1:45–87

    CAS  Google Scholar 

  • Osaki K, Kishizawa K, Kurata M (1982) Material time constant characterizing the non-linear viscoelasticity of entangled polymeric systems. Macromolecules 15:1068–1071

    Article  CAS  ADS  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2006) Yielding of colloidal glasses. Europhys Lett 75:624–630

    Article  CAS  ADS  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52:649–676

    Article  CAS  ADS  Google Scholar 

  • Pontom A, Barboux-Douuff S, Sanchez C (1999) Rheology of titanium oxide based gels: determination of gelation time versus temperature. Colloids Surf A 162:177–192

    Article  Google Scholar 

  • Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 42:197–218

    Article  ADS  Google Scholar 

  • Rueb CJ, Zukoski CF (1998) Rheology of suspensions of weakly attractive particles: approach to gelation. J Rheol 42:1451–1476

    Article  CAS  ADS  Google Scholar 

  • Schwarzl FR (1975) Numerical calculation of stress relaxation modulus from dynamic data for linear viscoelastic materials. Rheol Acta 14:581–590

    Article  MATH  Google Scholar 

  • Soskey PR, Winter HH (1984) Large step strain experiments with parallel-disk rotational rheometers. J Rheol 28:625–645

    Article  CAS  ADS  Google Scholar 

  • Tokumoto MS, Santilli CV, Pulcinelli SH (2000) Evolution of the viscoelastic properties of SnO2 colloidal suspensions during the sol–gel transition. J Non-Cryst Solids 273:116–123

    Article  CAS  ADS  Google Scholar 

  • Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85:449–452

    Article  CAS  ADS  PubMed  Google Scholar 

  • Uematsu H, Aoki Y, Sugimoto M, Koyama K (2010) Rheology of SiO2/(acrylic polymer/epoxy) Suspensions. I Linear viscoelasticity. Rheol Acta 49:299–304

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  ADS  Google Scholar 

  • Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17:1030–1036

    Article  CAS  Google Scholar 

  • Yanez JA, Laarz E, Bergstroem L (1999) Viscoelastic properties of particle gels. J Colloid Interface Sci 209:162–172

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa K, Toneaki N, Moreki Y, Takahashi M, Masuda T (1990a) Dynamic viscoelasticity, stress relaxation and elongational flow behavior of high density polyethylene melts. Nihon Reoroji Gakkaishi (J Soc Rheol Jpn) 18:80–86

    CAS  Google Scholar 

  • Yoshikawa K, Toneaki N, Moreki Y, Takahashi M, Masuda T (1990b) Dynamic viscoelasticity and stress relaxation of column-fractionated high density polyethylene melts. Nihon Reoroji Gakkaishi (J Soc Rheol Jpn) 18:87–92

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. T. Inada and T. Iwakura at Hitachi Chemical Co., Ltd. for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyohito Koyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uematsu, H., Aoki, Y., Sugimoto, M. et al. Rheology of SiO2/(acrylic polymer/epoxy) suspensions. II. Nonlinear stress relaxation. Rheol Acta 49, 1187–1196 (2010). https://doi.org/10.1007/s00397-010-0495-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0495-0

Keywords

Navigation