Skip to main content
Log in

Strain Softening of Styrene-Isoprene-Styrene Copolymers under Large Amplitude Oscillatory Shear for Clarifying Payne Effect in Rubbers and Their Nanocomposites

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To illustrate mechanisms of Payne effect in rubbers and their nanocomposites experiencing large amplitude oscillatory shear (LAOS), comparison studies were performed in styrene-isoprene-styrene (SIS) copolymers and their selectively crosslinked materials at temperatures below and above glass transition temperature of the polystyrene (PS) phase. It was found that under periodic dynamic shear, the strain softening is reversible when the polyisoprene (PI) phase, either crosslinked or not, is restricted by hard PS domains but it shows hysteresis once the PS domains disassociate. The strain softening can happen at the time scale of intrinsic Rouse relaxation of elastically active network strands. Critical stress of strain softening scales with number density of elastically active network strands, a simple relation being verified not only in the selectively crosslinked SIS copolymers but also in PI gum vulcanizates and carbon black filled PI compounds. Payne effect is traditionally used to term strain softening of highly filled rubber vulcanizates under LAOS deformation while evidenced herein is that the Payne effect of highly filled rubber vulcanizates shares the mechanism being common to the strain softening of SIS copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Payne, A. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 1962, 6, 57–63.

    Article  CAS  Google Scholar 

  2. Payne, A. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part II. J. Appl. Polym. Sci. 1962, 6, 368–372.

    Article  CAS  Google Scholar 

  3. Heinrich, G.; Klüppel, M., In Filled elastomers drug delivery systems; Springer, Berlin, Heidelberg, 2002, pp. 1–44.

    Book  Google Scholar 

  4. Lin, C.; Lee, Y. Strain-dependent dynamic properties of filled rubber network systems. Macromol. Theory Simul. 1966, 5, 1075–1104.

    Article  Google Scholar 

  5. Meier, J.; Klüppel, M. Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol. Mater. Eng. 2008, 293, 12–38.

    Article  CAS  Google Scholar 

  6. Niedermeier, W.; Frohlich, J.; Luginsland, H. Reinforcement mechanism in the rubber matrix by active fillers. Kaut. Gummi Kunst. 2002, 55, 356–356.

    CAS  Google Scholar 

  7. Kraus, G. Mechanical losses in carbon-black-filled rubbers. J. Appl. Polym. Sci. Symp. 1984, 39, 75–92.

    CAS  Google Scholar 

  8. Fan, X.; Xu, H.; Wu, C.; Song, Y.; Zheng, Q. Influences of chemical crosslinking, physical associating, and filler filling on nonlinear rheological responses of polyisoprene. J. Rheol. 2020, 64, 775–784.

    Article  CAS  Google Scholar 

  9. Roh, J.; Roy, D.; Lee, W.; Gergely, A.; Puskas, J.; Roland, C. Thermoplastic elastomers of alloocimene and isobutylene triblock copolymers. Polymer 2015, 56, 280–283.

    Article  CAS  Google Scholar 

  10. Leblanc, J. L. Nonlinear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments. Rheol. Acta 2007, 46, 1013–1027.

    Article  CAS  Google Scholar 

  11. Kang, H.; Hu, X.; Li, M.; Zhang, L.; Wu, Y.; Ning, N.; Tian, M. Novel biobased thermoplastic elastomer consisting of synthetic polyester elastomer and polylactide by in situ dynamical crosslinking method. RSC Adv. 2015, 5, 23498–23507.

    Article  CAS  Google Scholar 

  12. Ramier, J.; Gauthier, C.; Chazeau, L.; Stelandre, L.; Guy, L. Payne effect in silica-filled styrene-butadiene rubber: influence of surface treatment. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 286–298.

    Article  CAS  Google Scholar 

  13. Merabia, S.; Sotta, P.; Long, D. R. A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules 2008, 41, 8252–8266.

    Article  CAS  Google Scholar 

  14. Meera, A.; Said, S.; Grohens, Y.; Thomas, S. Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J. Phys. Chem. C 2009, 113, 17997–18002.

    Article  CAS  Google Scholar 

  15. Sarvestani, A. S. On the emergence of the Payne effect in polymer melts reinforced with nanoparticles. Macromol. Theory Simul. 2016, 25, 312–321.

    Article  CAS  Google Scholar 

  16. Xu, H.; Ding, L.; Song, Y.; Wang, W. Rheology of end-linking polydimethylsiloxane networks filled with silica. J. Rheol. 2020, 64, 1425–1438.

    Article  CAS  Google Scholar 

  17. Xiong, W.; Wang, X. Linear-nonlinear dichotomy of rheological responses in particle-filled polymer melts. J. Rheol. 2018, 62, 171–181.

    Article  CAS  Google Scholar 

  18. Wen, Q.; Basu, A.; Janmey, P. A.; Yodh, A. G. Non-affine deformations in polymer hydrogels. Soft Matter 2012, 8, 8039–8049.

    Article  CAS  Google Scholar 

  19. Raghavan, S. R.; Khan, S. A. Shear-induced microstructural changes in flocculated suspensions of fumed silica. J. Rheol. 1995, 39, 1311–1325.

    Article  CAS  Google Scholar 

  20. Song, Y.; Zeng, L.; Zheng, Q. Understanding the reinforcement and dissipation of natural rubber compounds filled with hybrid filler composed of carbon black and silica. Chinese J. Polym. Sci. 2017, 35, 1436–1446.

    Article  CAS  Google Scholar 

  21. Schwab, L.; Hojdis, N.; Lacayo, J.; Wilhelm, M. Fourier-transform rheology of unvulcanized, carbon black filled styrene butadiene rubber. Macromol. Mater. Eng. 2016, 301, 457–468.

    Article  CAS  Google Scholar 

  22. Fan, X.; Xu, H.; Zhang, Q.; Xiao, D.; Song, Y.; Zheng, Q. Insight into the weak strain overshoot of carbon black filled natural rubber. Polymer 2019, 167, 109–117.

    Article  CAS  Google Scholar 

  23. Song, Y.; Zeng, L.; Zheng, Q. Reconsideration of the rheology of silica filled natural rubber compounds. J. Phys. Chem. B 2017, 121, 5867–5875.

    Article  CAS  Google Scholar 

  24. Xu, H.; Xia, X.; Hussain, M.; Song, Y.; Zheng, Q. Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber. Polymer 2018, 156, 222–227.

    Article  CAS  Google Scholar 

  25. Xu, H.; Fan, X.; Song, Y.; Zheng, Q. Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites. Compos. Sci. Technol. 2020, 187, 107943.

    Article  CAS  Google Scholar 

  26. Xu, Y.; Xu, H.; Zheng, Q.; Song, Y. Influence of ionic liquids on rheological behaviors of polyisoprene rubber/silica compounds. Polymer 2019, 183, 121898.

    Article  CAS  Google Scholar 

  27. Song, Y.; Zeng, L.; Zheng, Q. Unique liquid-to-solid transition of carbon filler filled polystyrene melts. Compos. Sci. Technol. 2017, 147, 39–44.

    Article  CAS  Google Scholar 

  28. Erk, K. A.; Henderson, K. J.; Shull, K. R. Strain stiffening in synthetic and biopolymer networks. Biomacromolecules 2010, 11, 1358–1363.

    Article  CAS  Google Scholar 

  29. Hashemnejad, S. M.; Kundu, S. Nonlinear elasticity and cavitation of a triblock copolymer gel. Soft Matter 2015, 11, 4315–4325.

    Article  CAS  Google Scholar 

  30. Doi, M.; Edwards, S. F., In The theory of polymer dynamics, Oxford University Press, New York, 1988.

    Google Scholar 

  31. Graessley, W. W. Viscosity of entangling polydisperse polymers. J. Chem. Phys. 1967, 47, 1942–1953.

    Article  CAS  Google Scholar 

  32. Ianniruberto, G.; Marrucci, G. Convective constraint release (CCR) revisited. J. Rheol. 2014, 58, 89–102.

    Article  CAS  Google Scholar 

  33. Mead, D.; Larson, R.; Doi, M. A molecular theory for fast flows of entangled polymers. Macromolecules 1998, 31, 7895–7914.

    Article  CAS  Google Scholar 

  34. Colby, R. H.; Boris, D.; Krause, W.; Dou, S. Shear thinning of unentangled flexible polymer liquids. Rheol. Acta 2007, 46, 569–575.

    Article  CAS  Google Scholar 

  35. Subbotin, A.; Semenov, A.; Manias, E.; Hadziioannou, G.; Ten Brinke, G. Nonlinear rheology of polymer melts under shear flow. Macromolecules 1995, 28, 3898–3900.

    Article  CAS  Google Scholar 

  36. Subbotin, A.; Semenov, A.; Hadziioannou, G.; Ten Brinke, G. Nonlinear rheology of confined polymer melts under oscillatory flow. Macromolecules 1996, 29, 1296–1304.

    Article  CAS  Google Scholar 

  37. Semenov, A.; Subbotin, A.; Hadziioannou, G.; Ten Brinke, G.; Manias, E.; Doi, M. Nonlinear dynamics of melted polymer layers. Macromol. Symp. 1997, 121, 175–186.

    Article  CAS  Google Scholar 

  38. Sarvestani, A. S. Nonlinear rheology of unentangled polymer melts reinforced with high concentration of rigid nanoparticles. Nanoscale Res. Lett. 2010, 5, 791–794.

    Article  CAS  Google Scholar 

  39. Fatkullin, N.; Mattea, C.; Stapf, S. A simple scaling derivation of the shear thinning power-law exponent in entangled polymer melts. Polymer 2011, 52, 3522–3525.

    Article  CAS  Google Scholar 

  40. Sato, T.; Watanabe, H.; Osaki, K. Rheological and dielectric behavior of a styrene-isoprene-styrene triblock copolymer in n-tetradecane. 1. Rubbery-plastic-viscous transition. Macromolecules 1996, 29, 6231–6239.

    Article  CAS  Google Scholar 

  41. Watanabe, H.; Sato, T.; Osaki, K.; Yao, M.; Yamagishi, A. Rheological and dielectric behavior of a styrene-isoprene-styrene triblock copolymer in selective solvents. 2. Contribution of loop-type middle blocks to elasticity and plasticity. Macromolecules 1997, 30, 5877–5892.

    Article  CAS  Google Scholar 

  42. Buzza, D.; Fzea, A.; Allgaier, J.; Young, R.; Hawkins, R.; Hamley, I.; McLeish, T.; Lodge, T. Linear melt rheology and small-angle X-ray scattering of AB diblocks vs A2B2 four arm star block copolymers. Macromolecules 2000, 33, 8399–8414.

    Article  CAS  Google Scholar 

  43. Ryu, C.; Lee, M.; Hajduk, D.; Lodge, T. Structure and viscoelasticity of matched asymmetric diblock and triblock copolymers in the cylinder and sphere microstructures. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 2811–2823.

    Article  CAS  Google Scholar 

  44. Fredrickson, G. H.; Bates, F. S. Dynamics of block copolymers: theory and experiment. Annu. Rev. Mater. Sci. 1996, 26, 501–550.

    Article  CAS  Google Scholar 

  45. Almdal, K.; Mortensen, K.; Koppi, K. A.; Tirrell, M.; Bates, F. S. Isotropic and anisotropic composition fluctuations close to the order-to-disorder transition in an asymmetric diblock copolymer melt subjected to reciprocating shear fields. J. Phys. II 1996, 6, 617–637.

    CAS  Google Scholar 

  46. Schweizer, T.; van Meerveld, J.; Öttinger, H. C. Nonlinear shear rheology of polystyrene melt with narrow molecular weight distribution-experiment and theory. J. Rheol. 2004, 48, 1345–1363.

    Article  CAS  Google Scholar 

  47. Fetters, L.; Lohse, D.; Colby, R., In Physical properties of polymers handbook; Springer, New York, 2007, p. 447–454.

    Book  Google Scholar 

  48. Bishop, E.; Davison, S. Network characteristics of the thermoplastic elastomers. J. Polym. Sci., Part C: Polym. Symp. 1969, 26, 59–79.

    Article  Google Scholar 

  49. Kim, J. K.; Lee, H. H.; Gu, Q.-J.; Chang, T.; Jeong, Y. H. Determination of order-order and order-disorder transition temperatures of SIS block copolymers by differential scanning calorimetry and rheology. Macromolecules 1998, 31, 4045–4048.

    Article  CAS  Google Scholar 

  50. Hampu, N.; Hillmyer, M. A. Nanostructural rearrangement of lamellar block polymers cured in the vicinity of the order-disorder transition. Macromolecules 2020, 53, 7691–7704.

    Article  CAS  Google Scholar 

  51. Gehlsen, M. D.; Almdal, K.; Bates, F. S. Order-disorder transition: diblock versus triblock copolymers. Macromolecules 1992, 25, 939–943.

    Article  CAS  Google Scholar 

  52. Watanabe, H. Dielectric relaxation of type-A polymers in melts and solutions. Macromol. Rapid Commun. 2001, 22, 127–175.

    Article  CAS  Google Scholar 

  53. Vogel, H. The law of the relation between the viscosity of liquids and the temperature. Phys. Z 1921, 22, 645–646.

    CAS  Google Scholar 

  54. Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8, 339–355.

    Article  CAS  Google Scholar 

  55. Tammann, G.; Hesse, W. Die abhängigkeit der viscosität von der temperatur bie unterkühlten flüssigkeiten. Z. Anorg. Allg. Chem. 1926, 156, 245–257.

    Article  CAS  Google Scholar 

  56. Adachi, K.; Kotaka, T. Dielectric normal mode relaxation of tethered polyisoprene chains in styrene-isoprene block copolymers. Pure Appl. Chem. 1997, 69, 125–130.

    Article  CAS  Google Scholar 

  57. Boese, D.; Kremer, F.; Fetters, L. J. Molecular dynamics in linear and multiarmed star polymers of cis-polyisoprene as studied by dielectric spectroscopy. Macromolecules 1990, 23, 1826–1830.

    Article  CAS  Google Scholar 

  58. Havriliak, S.; Negami, S. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci., Part C:Polym. Symp. 1966, 14, 99–117.

    Article  Google Scholar 

  59. Poh, B. T.; Adachi, K.; Kotaka, T. Solution-crosslinked networks. 3. Dielectric normal mode process of guest polyisoprene in natural rubber networks. Macromolecules 1987, 20, 2574–2579.

    Article  CAS  Google Scholar 

  60. Watanabe, H.; Urakawa, O.; Yamada, H.; Yao, M.-L. Dielectric relaxation of cis-polyisoprene chains in oligo-and polybutadiene matrices: matrix effects on mode distribution and relaxation time. Macromolecules 1996, 29, 755–763.

    Article  CAS  Google Scholar 

  61. Adachi, K.; Kotaka, T. Dielectric normal mode process in undiluted cis-polyisoprene. Macromolecules 1985, 18, 466–472.

    Article  CAS  Google Scholar 

  62. Rosedale, J.; Bates, F. Rheology of ordered and disordered symmetric poly(ethylenepropylene)-poly(ethylethylene) diblock copolymers. Macromolecules 1990, 23, 2329–2338.

    Article  CAS  Google Scholar 

  63. Lodge, T.; Pan, C.; Jin, X.; Liu, Z.; Zhao, J.; Maurer, W.; Bates, F. Failure of the dilution approximation in block copolymer solutions. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 2289–2293.

    Article  CAS  Google Scholar 

  64. Alig, I.; Floudas, G.; Avgeropoulos, A.; Hadjichristidis, N. Junction point fluctuations in microphase separated polystyrene-polyisoprene-polystyrene triblock copolymer melts. A dielectric and rheological investigation. Macromolecules 1997, 30, 5004–5011.

    Article  CAS  Google Scholar 

  65. Laurer, J.; Khan, S.; Spontak, R.; Satkowski, M.; Grothaus, J.; Smith, S.; Lin, J. Morphology and rheology of SIS and SEPS triblock copolymers in the presence of a midblock-selective solvent. Langmuir 1999, 15, 7947–7955.

    Article  CAS  Google Scholar 

  66. Chen, Q.; Tudryn, G. J.; Colby, R. H. Ionomer dynamics and the sticky Rouse model. J. Rheol. 2013, 57, 1441–1462.

    Article  CAS  Google Scholar 

  67. Chen, Q.; Zhang, Z.; Colby, R. H. Viscoelasticity of entangled random polystyrene ionomers. J. Rheol. 2016, 60, 1031–1040.

    Article  CAS  Google Scholar 

  68. Sajkiewicz, P.; Phillips, P. Peroxide crosslinking of linear low-density polyethylenes with homogeneous distribution of short chain branching. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 853–862.

    Article  CAS  Google Scholar 

  69. Roth, L. E.; Agudelo, D. C.; Ressia, J. A.; Gómez, L. R.; Vallés, E. M.; Villar, M. A.; Vega, D. A. Viscoelastic response of linear defects trapped in polymer networks. Eur. Polym. J. 2015, 64, 1–9.

    Article  CAS  Google Scholar 

  70. Fan, X.; Wen, F.; Shi, X.; Yang, L.; Hussain, M.; Song, Y.; Zheng, Q. Roles played by novolac resin on rubber compounding, reinforcement and nonlinear rheological behaviors. polymer 2020, 207, 122895.

    Article  CAS  Google Scholar 

  71. Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K. S.; Nam, J. G.; Ahn, K. H.; Lee, S. J.; Ewoldt, R. H.; McKinley, G. H. A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 2011, 36, 1697–1753.

    Article  CAS  Google Scholar 

  72. Kannan, R. M.; Kornfield, J. A. Evolution of microstructure and viscoelasticity during flow alignment of a lamellar diblock copolymer. Macromolecules 1994, 27, 1177–1186.

    Article  CAS  Google Scholar 

  73. Ohta, T.; Enomoto, Y.; Harden, J. L.; Doi, M. Anomalous rheological behavior of ordered phases of block copolymers. 1. Macromolecules 1993, 26, 4928–4934.

    Article  CAS  Google Scholar 

  74. Riise, B. L.; Fredrickson, G. H.; Larson, R. G.; Pearson, D. S. Rheology and shear-induced alignment of lamellar diblock and triblock copolymers. Macromolecules 1995, 28, 7653–7659.

    Article  CAS  Google Scholar 

  75. Hamley, I. W., In The physics of block copolymers, Oxford University Press, New York, 1998.

    Google Scholar 

  76. Koppi, K. A.; Tirrell, M.; Bates, F. S.; Almdal, K.; Mortensen, K. Epitaxial growth and shearing of the body centered cubic phase in diblock copolymer melts. J. Rheol. 1994, 38, 999–1027.

    Article  CAS  Google Scholar 

  77. Papon, A.; Merabia, S.; Guy, L.; Lequeux, F.; Montes, H.; Sotta, P.; Long, D. R. Unique nonlinear behavior of nano-filled elastomers: from the onset of strain softening to large amplitude shear deformations. Macromolecules 2012, 45, 2891–2904.

    Article  CAS  Google Scholar 

  78. Likhtman, A. E.; McLeish, T. C. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 2002, 35, 6332–6343.

    Article  CAS  Google Scholar 

  79. Liu, C.; He, J.; Van Ruymbeke, E.; Keunings, R.; Bailly, C. Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight. Polymer 2006, 47, 4461–4479.

    Article  CAS  Google Scholar 

  80. Song, Y.; Zheng, Q. A guide for hydrodynamic reinforcement effect in nanoparticle-filled polymers. Crit. Rev. Solid State Mater. Sci. 2016, 41, 318–346.

    Article  CAS  Google Scholar 

  81. Song, Y.; Zheng, Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog. Mater. Sci. 2016, 84, 1–58.

    Article  CAS  Google Scholar 

  82. Chen, H.; Ding, Y.; Tan, C. Rheological behaviour of nanofluids. New J. Phys. 2007, 9, 367.

    Article  Google Scholar 

  83. Schwartz, G. A.; Cerveny, S.; Marzocca, Á. J.; Gerspacher, M.; Nikiel, L. Thermal aging of carbon black filled rubber compounds. I. Experimental evidence for bridging flocculation. Polymer 2003, 44, 7229–7240.

    Article  CAS  Google Scholar 

  84. You, W.; Yu, W. Slow linear viscoelastic relaxation of polymer nanocomposites: contribution from confined diffusion of nanoparticles. Macromolecules 2019, 52, 9094–9104.

    Article  Google Scholar 

  85. Ding, Y.; Pawlus, S.; Sokolov, A. P.; Douglas, J. F.; Karim, A.; Soles, C. L. Dielectric spectroscopy investigation of relaxation in C60-polyisoprene nanocomposites. Macromolecules 2009, 42, 3201–3206.

    Article  CAS  Google Scholar 

  86. Cai, L. H.; Panyukov, S.; Rubinstein, M. Hopping diffusion of nanoparticles in polymer matrices. Macromolecules 2015, 48, 847–862.

    Article  CAS  Google Scholar 

  87. Domurath, J.; Saphiannikova, M.; Ausias, G.; Heinrich, G. Modelling of stress and strain amplification effects in filled polymer melts. J. Non-Newton. Fluid Mech. 2012, 171, 8–16.

    Article  Google Scholar 

  88. Baig, C.; Mavrantzas, V. G.; Kroger, M. Flow effects on melt structure and entanglement network of linear polymers: results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear. Macromolecules 2010, 43, 6886–6902.

    Article  CAS  Google Scholar 

  89. Chappa, V. C.; Morse, D. C.; Zippelius, A.; Müller, M. Translationally invariant slip-spring model for entangled polymer dynamics. Phys. Rev. Lett. 2012, 109, 148302.

    Article  Google Scholar 

  90. Pincus, P. Excluded volume effects and stretched polymer chains. Macromolecules 1976, 9, 386–388.

    Article  CAS  Google Scholar 

  91. Rubinstein, M.; Colby, R. H., In Polymer physics, Oxford University Press, New York, 2003.

    Google Scholar 

  92. Rubinstein, M.; Panyukov, S. Nonaffine deformation and elasticity of polymer networks. Macromolecules 1997, 30, 8036–8044.

    Article  CAS  Google Scholar 

  93. Zhong, X.; Song, Y.; Zheng, Q.; Wang, W. Influence of coagents on Payne effect of butadiene rubber vulcanizates. Polymer 2021, 212, 123298.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U1908221, 51873190 and 51790503) and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No. 2021SZ-TD002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hu Song.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2832_MOESM1_ESM.pdf

Strain Softening of Styrene-Isoprene-Styrene Copolymers under Large Amplitude Oscillatory Shear for Clarifying Payne Effect in Rubbers and Their Nanocomposites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, XP., Song, YH., Zheng, Q. et al. Strain Softening of Styrene-Isoprene-Styrene Copolymers under Large Amplitude Oscillatory Shear for Clarifying Payne Effect in Rubbers and Their Nanocomposites. Chin J Polym Sci 41, 153–165 (2023). https://doi.org/10.1007/s10118-022-2832-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2832-z

Keywords

Navigation