Skip to main content
Log in

Rheology of SiO2/(acrylic polymer/epoxy) suspensions. I. Linear viscoelasticity

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Linear viscoelastic properties of SiO2/(AP/EP) suspension with various SiO2 volume fractions (ϕ) in a blend of acrylic polymer (AP) and epoxy (EP) were investigated at various temperatures (T). The AP/EP contained 70 vol.% of EP. The SiO2 particles were treated with epoxy silane coupling agent. The effects of the SiO2 particles are more pronounced in the terminal zone: a transition from viscoelastic liquid (ϕ ≤ 30 vol.%) to viscoelastic solid (ϕ ≥ 40 vol.%) was observed which can be interpreted as a critical gelation occurring at a critical particle content and critical gel temperature. The SiO2/(AP/EP) systems exhibited a critical gel behavior at ϕ ≅ 35 vol.% and T ≅ 100°C characterized with a power–law relationship between the storage and loss moduli (G and G ) and frequency (ω); G  = G /tan(/2) ∝ ω n. The critical gel exponent (n) was estimated to be about 0.45. The gelation occurred with increasing T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amari T, Watanabe K (1983) Rheological properties of disperse systems of pigment. Polym Eng Rv 3:277–321

    CAS  Google Scholar 

  • Aoki Y (2007) Rheological characterization of carbon black/varnish suspensions. Colloids Surf A 308:79–86

    Article  CAS  Google Scholar 

  • Aoki Y, Watanabe H (2004) Rheology of carbon black suspensions. III. Sol-gel transition System. Rheol Acta 43:390–395

    Article  CAS  Google Scholar 

  • Aoki Y, Hatano A, Watanabe H (2003) Rheology of carbon black suspensions. I. Three types of viscoelastic behavior. Rheol Acta 42:209–216

    Article  CAS  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31:683–697

    Article  CAS  ADS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Grant MC, Russel WB (1993) Volume fraction dependence of elastic moduli and transition temperatures colloidal silica gels. Phys Rev E 47:2606–2614

    Article  CAS  ADS  Google Scholar 

  • Horn JA, Patterson BR (1997) Thermally induced reversible coagulation in ceramic powder-polymer liquid suspensions. J Am Ceram Soc 80:1789–1797

    Article  CAS  Google Scholar 

  • In M, Prud’homme PK (1993) Fourier transform mechanically spectroscopy of the sol-gel transition in zirconium alkoxide ceramic gels. Rheol Acta 32:556–565

    Article  CAS  Google Scholar 

  • Jansen JW, De Kruif CG, Vriji A (1986a) Attractions in sterically stabilizrd silica dispersions. I. Theory of phase separation. J Colloid Interface Sci 114:471–480

    Article  CAS  Google Scholar 

  • Jansen JW, De Kruif CG, Vriji A (1986b) Attractions in sterically stabilizrd silica dispersions. II. Experiment of phase separation induced by temperature variation. J Colloid Interface Sci 114:481–491

    Article  CAS  Google Scholar 

  • Jansen JW, De Kruif CG, Vriji A (1986c) Attractions in sterically stabilizrd silica dispersions. III. Second virial coefficient as a function of temperature as measured by means of turbidity. J Colloid Interface Sci 114:492–500

    Article  CAS  Google Scholar 

  • Jansen JW, De Kruif CG, Vriji A (1986d) Attractions in sterically stabilizrd silica dispersions. IV. Sedimentation. J Colloid Interface Sci 114:501–504

    Article  CAS  Google Scholar 

  • Jokinen M, Gyorvary E, Rosenholm JB (1998) Viscoelastic characterization of three different sol-gel derived silica gels. Colloids Surf A 141:205–211

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids, chapters 6 and 7. Oxford University Press, New York

    Google Scholar 

  • Onogi S, Matsumoto T (1981) Rheological properties of polymer solutions and melts containing suspended particles. Polym Eng Rev 1:45–87

    CAS  Google Scholar 

  • Pontom A, Barboux-Douuff S, Sanchez C (1999) Rheology of titanium oxide based gels: determination of gelation time versus temperature. Colloids Surf A 162:177–192

    Article  Google Scholar 

  • Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 42:197–218

    Article  ADS  Google Scholar 

  • Rueb CJ, Zukoski CF (1998) Rheology of suspensions of weakly attractive particles: approach to gelation. J Rheol 42:1451–1476

    Article  CAS  ADS  Google Scholar 

  • Tokumoto MS, Santilli CV, Pulcinelli SH (2000) Evolution of the viscoelastic properties of SnO2 colloidal suspensions during the sol-gel transition. J Non-Cryst Solids 273:116–123

    Article  CAS  ADS  Google Scholar 

  • Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85:449–452

    Article  CAS  PubMed  ADS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  ADS  Google Scholar 

  • Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17:1030–1036

    Article  CAS  Google Scholar 

  • Yanez JA, Laarz E, Bergstroem L (1999) Viscoelastic properties of particle gels. J Colloid Interface Sci 209:162–172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. T. Inada and T. Iwakura at Hitachi Chemical Co., Ltd. for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyohito Koyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uematsu, H., Aoki, Y., Sugimoto, M. et al. Rheology of SiO2/(acrylic polymer/epoxy) suspensions. I. Linear viscoelasticity. Rheol Acta 49, 299–304 (2010). https://doi.org/10.1007/s00397-009-0423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0423-3

Keywords

Navigation