Skip to main content
Log in

Anion effect on the aggregation behavior of the long-chain spacers dicationic imidazolium-based ionic liquids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This work reports the study of the anion effect on the aggregation behavior of the long-chain spacers of dicationic imidazolium-based ionic liquids (ILs) in a 4.75 % (v/v) ethanol-water solution as well as in ethanol (95 %). The anions studied were Br, NO3 , BF4 , SCN and NTf2 . Aggregation behavior was investigated by differential scanning calorimetry (DSC), conductivity, surface tension, and fluorescence. In the ethanol-water solution, the critical aggregation concentration (CAC), free energy aggregation (∆G°a), and the ionization degree (α) all significantly decreased with the increase in anion hydrophobicity. In ethanol, the CAC and ∆G°a values also decreased with the increase in anion size and hydrophobicity. The free energy adsorption (∆G°ads) data showed that the dicationic ILs have good surfactant activity, and this property improved with the decrease in the hydration radius of the anions. The anion volumes calculated also showed a good correlation with the CAC values for aggregation in ethanol-water solution and ethanol.

Favored aggregation of imidazolium based dicationic ILs by the increase in the anion hydrophobicity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kokorin A (2011) Ionic liquids: theory, properties and new approaches. Intech, Rijeka

    Book  Google Scholar 

  2. Martins MA, Frizzo CP, Tier AZ et al (2014) Update 1 of: ionic liquids in heterocyclic synthesis. Chem Rev 114:PR1–PR70. doi:10.1021/cr500106x

    Article  Google Scholar 

  3. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576. doi:10.1021/cr1003248

    Article  CAS  Google Scholar 

  4. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264. doi:10.1021/cr0680686

    Article  CAS  Google Scholar 

  5. Macfarlane DR, Forsyth M, Howlett PC et al (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40:1165–1173. doi:10.1021/ar7000952

    Article  CAS  Google Scholar 

  6. Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086. doi:10.1021/ar700044y

    Article  CAS  Google Scholar 

  7. Zhou Y, Antonietti M (2003) Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique. Adv Mater 15:1452–1455. doi:10.1002/adma.200305265

    Article  CAS  Google Scholar 

  8. Adams CJ, Bradley AE, Seddon KR (2001) The synthesis of mesoporous materials using novel ionic liquid templates in water. Aust J Chem 54:679–681. doi:10.1071/CH01191

    Article  CAS  Google Scholar 

  9. Stepnowski P, Mrozik W, Nichthauser J (2007) Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ Sci Technol 41:511–516. doi:10.1021/es062014w

    Article  CAS  Google Scholar 

  10. Moniruzzaman M, Tamura M, Tahara Y et al (2010) Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation. Int J Pharm 400:243–250. doi:10.1016/j.ijpharm.2010.08.034

    Article  CAS  Google Scholar 

  11. Smirnova NA, Safonova EA (2012) Micellization in solutions of ionic liquids. Colloid J 74:254–265. doi:10.1134/S1061933X12020123

    Article  CAS  Google Scholar 

  12. Lee JW, Shin JY, Chun YS et al (2010) Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc Chem Res 43:985–994. doi:10.1021/ar9002202

    Article  CAS  Google Scholar 

  13. Martins MAP, Frizzo CP, Moreira DN et al (2014) Ionic liquids in heterocyclic synthesis. Chem Rev 114:PR1–PR70. doi:10.1021/cr500106x

    Article  Google Scholar 

  14. Frizzo CP, Moreira DN, Guarda EA et al (2009) Ionic liquid as catalyst in the synthesis of N-alkyl trifluoromethyl pyrazoles. Catal Commun 10:1153–1156. doi:10.1016/j.catcom.2008.12.030

    Article  CAS  Google Scholar 

  15. Buriol L, Frizzo CP, Prola LDT et al (2011) Synergic effects of ionic liquid and microwave irradiation in promoting trifluoromethylpyrazole synthesis. Catal Lett 141:1130–1135. doi:10.1007/s10562-011-0571-9

    Article  CAS  Google Scholar 

  16. Ao M, Huang P, Xu G et al (2009) Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length. Colloid Polym Sci 287:395–402. doi:10.1007/s00396-008-1976-x

    Article  CAS  Google Scholar 

  17. Douce L, Suisse J-M, Guillon D, Taubert A (2011) Imidazolium-based liquid crystals: a modular platform for versatile new materials with finely tuneable properties and behaviour. Liq Cryst 38:1653–1661. doi:10.1080/02678292.2011.610474

    Article  CAS  Google Scholar 

  18. Zhang S, Yuan J, Ma H et al (2011) Aqueous phase behavior of ionic liquid-related gemini surfactant revealed by differential scanning calorimetry and polarized optical microscopy. Colloid Polym Sci 289:213–218. doi:10.1007/s00396-010-2333-4

    Article  CAS  Google Scholar 

  19. Gindri IM, Frizzo CP, Bender CR et al (2014) Preparation of TiO2 nanoparticles coated with ionic liquids: a supramolecular approach. ACS Appl Mater Interfaces 6:11536–11543. doi:10.1021/am5022107

    Article  CAS  Google Scholar 

  20. Yu G, Yan S, Zhou F et al (2006) Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films. Tribol Lett 25:197–205. doi:10.1007/s11249-006-9167-8

    Article  Google Scholar 

  21. Ge R, Hardacre C, Nancarrow P, Rooney DW (2007) Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. J Chem Eng Data 52:1819–1823. doi:10.1021/je700176d

    Article  CAS  Google Scholar 

  22. Frizzo CP, Tier AZ, Bender CR, Gindri IM, Villetti MA, Zanatta N, Bonacorso HG, Martins MAP (2014) Structural and physical aspects of ionic liquid aggregates in solution. In: Handy S (ed) Ion. Liq. - Curr. State Art, 1st ed. Intech, Rijeka, pp 1–40

    Google Scholar 

  23. Frizzo CP, Gindri IM, Bender CR et al (2015) Effect on aggregation behavior of long-chain spacers of dicationic imidazolium-based ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Asp 468:285–294. doi:10.1016/j.colsurfa.2014.12.029

    Article  CAS  Google Scholar 

  24. Shirota H, Mandai T, Fukazawa H, Kato T (2011) Comparison between dicationic and monocationic ionic liquids: liquid density, thermal properties, surface tension, and shear viscosity. J Chem Eng Data 56:2453–2459. doi:10.1021/je2000183

    Article  CAS  Google Scholar 

  25. Jiang X, Zhou L, Li Y et al (2007) Synthesis and properties of a novel class of gemini pyridinium surfactants. Langmuir 23:11404–11408. doi:10.1021/la701154w

    Article  Google Scholar 

  26. Wang J, Zhang L, Wang H, Wu C (2011) Aggregation behavior modulation of 1-dodecyl-3-methylimidazolium bromide by organic solvents in aqueous solution. J Phys Chem B 115:4955–4962. doi:10.1021/jp201604u

    Article  CAS  Google Scholar 

  27. Carpena P, Aguiar J, Bernaola-Galván P, Carnero Ruiz C (2002) Problems associated with the treatment of conductivity-concentration data in surfactant solutions: simulations and experiments. Langmuir 18:6054–6058. doi:10.1021/la025770y

    Article  CAS  Google Scholar 

  28. Zana R (1980) Ionization of cationic micelles: effect of the detergent structure. J Colloid Interface Sci 78:330–337. doi:10.1016/0021-9797(80)90571-8

    Article  CAS  Google Scholar 

  29. Zana R (1996) Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12:1208–1211. doi:10.1021/la950691q

    Article  CAS  Google Scholar 

  30. Marcus Y (1991) Thermodynamics of solvation of ions. J Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

  31. Feng Q, Wang H, Zhang S, Wang J (2010) Aggregation behavior of 1-dodecyl-3-methylimidazolium bromide ionic liquid in non-aqueous solvents. Colloids Surf A Physicochem Eng Asp 367:7–11. doi:10.1016/j.colsurfa.2010.05.032

    Article  CAS  Google Scholar 

  32. Wang H, Wang J, Zhang S, Xuan X (2008) Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solutions. J Phys Chem B 112:16682–16689. doi:10.1021/jp8069089

    Article  CAS  Google Scholar 

  33. Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22. doi:10.1016/j.jbiotec.2009.04.011

    Article  CAS  Google Scholar 

  34. Vaghela NM, Sastry NV, Aswal VK (2011) Surface active and aggregation behavior of methylimidazolium-based ionic liquids of type [C n mim] [X], n = 4, 6, 8 and [X] = Cl−, Br−, and I− in water. Colloid Polym Sci 289:309–322. doi:10.1007/s00396-010-2332-5

    Article  CAS  Google Scholar 

  35. Ao MQ, Xu GY, Zhu YY, Bai Y (2008) Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants. J Colloid Interface Sci 326:490–495. doi:10.1016/j.jcis.2008.06.048

    Article  CAS  Google Scholar 

  36. Baltazar QQ, Chandawalla J, Sawyer K, Anderson JL (2007) Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf A Physicochem Eng Asp 302:150–156. doi:10.1016/j.colsurfa.2007.02.012

    Article  CAS  Google Scholar 

  37. Bandrés I, Meler S, Giner B et al (2009) Aggregation behavior of pyridinium-based ionic liquids in aqueous solution. J Solut Chem 38:1622–1634. doi:10.1007/s10953-009-9474-4

    Article  Google Scholar 

  38. Cambridge Crystallographic Data Centre. Union Road, Cambridge, England. The CCDC numbers for Br (864748), NO3 (299405), SCN (192429), BF4 (280603), NTf2 (783124) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from Cambridge Crystallographic Data Centre via https://summary.ccdc.cam.ac.uk/structure-summary-form

  39. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19. doi:10.1039/b818330a

    Article  CAS  Google Scholar 

  40. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer 3.1. The University of Western Australia

  41. Srinivasa RK, Singh T, Trivedi TJ, Kumar A (2011) Aggregation behavior of amino acid ionic liquid surfactants in aqueous media. J Phys Chem B 115:13847–13853. doi:10.1021/jp2076275

    Article  Google Scholar 

  42. Zhao M, Zheng L (2011) Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution. Phys Chem Chem Phys 13:1332–1337. doi:10.1039/c0cp00342e

    Article  CAS  Google Scholar 

  43. Liu X, Hu J, Huang Y, Fang Y (2013) Aggregation behavior of surface active dialkylimidazolium ionic liquids [C12Cnim]Br (n = 1-4) in aqueous solutions. J Surfactants Deterg 16:539–546. doi:10.1007/s11743-012-1409-1

    Article  CAS  Google Scholar 

  44. Yoshimura T, Bong M, Matsuoka K et al (2009) Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants. J Colloid Interface Sci 339:230–235. doi:10.1016/j.jcis.2009.07.054

    Article  CAS  Google Scholar 

  45. Wang X, Li Q, Chen X, Li Z (2012) Effects of structure dissymmetry on aggregation behaviors of quaternary ammonium gemini surfactants in a protic ionic liquid EAN. Langmuir 28:16547–16554. doi:10.1021/la304004u

    Article  CAS  Google Scholar 

  46. Hubbard A (2004) Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications. J Colloid Interface Sci 272:502. doi:10.1016/j.jcis.2003.12.054

    Article  CAS  Google Scholar 

  47. Aguiar J, Carpena P, Molina-Bolívar JA, Carnero Ruiz C (2003) On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Colloid Interface Sci 258:116–122. doi:10.1016/S0021-9797(02)00082-6

    Article  CAS  Google Scholar 

  48. Orth RG, Dunbar RC (1978) Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J Am Chem Soc 100:5951–5952. doi:10.1021/ja00486a062

    Article  Google Scholar 

  49. Bruni G, Berbenni V, Sartor F et al (2012) Quantification methods of amorphous/crystalline fractions in high-energy ball milled pharmaceutical products. J Therm Anal Calorim 108:235–241. doi:10.1007/s10973-011-1504-y

    Article  CAS  Google Scholar 

  50. Inoue T, Dong B, Zheng LQ (2007) Phase behavior of binary mixture of 1-dodecyl-3-methylimidazolium bromide and water revealed by differential scanning calorimetry and polarized optical microscopy. J Colloid Interface Sci 307:578–581. doi:10.1016/j.jcis.2006.12.063

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Universal/Proc. 474895/2013-0 and Universal/Proc. 475556/2012-7, Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) (Edital pró-equipamentos no. 01/2007), and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)—Edital Pesquisador Gaúcho. The fellowships are from CNPq (M.A.P.M., C.R.B.) and CAPES (I.M.G., P.R.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa P. Frizzo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frizzo, C.P., Bender, C.R., Gindri, I.M. et al. Anion effect on the aggregation behavior of the long-chain spacers dicationic imidazolium-based ionic liquids. Colloid Polym Sci 293, 2901–2910 (2015). https://doi.org/10.1007/s00396-015-3680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3680-y

Keywords

Navigation