Skip to main content
Log in

Aggregation Behavior of Surface Active Dialkylimidazolium Ionic Liquids [C12C n im]Br (n = 1–4) in Aqueous Solutions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Four diakylimidazolium ionic liquids, namely 1-alkyl-3-dodecylimidazolium bromides ([C12C n im]Br) with the same dodecyl long-chain tail (C12) and the short alkyl side chain (C n , n = 1–4), were synthesized, and their molecule structures were confirmed by ESI–MS, 1H-NMR and elemental analysis. The physicochemical properties of [C12C n im]Br (n = 1–4) were determined by means of surface tension and fluorescence probe methods, respectively. It was found that elongation of the side chain length will bring about an enhancement of surface activity. Along with the side chain length increasing, the critical micelle concentration (CMC), surface tension at CMC (γ CMC), the maximum surface excess (Γm), micellar aggregation number (N m) and micellar microenvironment polarity of [C12C n im]Br decrease, while adsorption efficiency (pC 20), surface pressure at CMC (ΠCMC), the minimum molecular cross-sectional area (A min) at air-solution interfaces and CMC/C 20 ratio increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong B, Li N, Zheng L, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182

    Article  CAS  Google Scholar 

  2. Dorbritz S, Ruth W, Kragl U (2005) Investigation on aggregate formation of ionic liquids. Adv Synth Catal 347:1273–1279

    Article  CAS  Google Scholar 

  3. Merrigan TL, Bates ED, Dorman SC Jr, Davis JH (2000) New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids. Chem Commun 20:2051–2052

    Article  Google Scholar 

  4. Miskolczy Z, Sebők-Nagy K, Biczók L, Göktürk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300

    Article  CAS  Google Scholar 

  5. Baltazar QQ, Chandawalla J, Sawyer K, Anderson JL (2007) Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf A 302:150–156

    Article  CAS  Google Scholar 

  6. Jungnickel C, Łuczak J, Ranke J, Fernández JF (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf A 316:278–284

    Article  CAS  Google Scholar 

  7. Łuczak J, Hupka J, Thöming J, Jungnickel C (2008) Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf A 329:125–133

    Article  Google Scholar 

  8. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  CAS  Google Scholar 

  9. Smirnova NA, Vanin AA, Safonova EA, Pukinsky IB, Anufrikov YA, Makarov AL (2009) Self-assembly in aqueous solutions of imidazolium ionic liquids and their mixtures with an anionic surfactant. J Colloid Interface Sci 336:793–802

    Article  CAS  Google Scholar 

  10. Goodchild I, Collier L, Millar SL, Prokeš I, Lord JCD, Butts CP, Bowers J, Webster JRP, Heenan RK (2007) Structural studies of the phase, aggregation and surface behavior of 1-alkyl-3-methylimidazolium halide + water mixtures. J Colloid Interface Sci 307:455–468

    Article  CAS  Google Scholar 

  11. Inoue T, Ebina H, Dong B, Zheng L (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interface Sci 314:236–241

    Article  CAS  Google Scholar 

  12. El Seoud OA, Pires PAR, Abdel-Moghny T, Bastos E (2007) Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. J Colloid Interface Sci 313:296–304

    Article  Google Scholar 

  13. Ao M, Xu G, Zhu Y, Bai Y (2008) Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants. J Colloid Interface Sci 326:490–495

    Article  CAS  Google Scholar 

  14. Thomaier S, Kunz W (2007) Aggregates in mixtures of ionic liquids. J Mol Liq 130:104–107

    Article  CAS  Google Scholar 

  15. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Lopes JNC, Seddon KR, Rebelo LPN (2008) On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B 112:8645–8650

    Article  CAS  Google Scholar 

  16. Zhao Y, Gao S, Wang J, Tang J (2008) Aggregation of ionic liquids [C n mim]Br (n = 4,6,8,10,12) in D2O: a NMR study. J Phys Chem B 112:2031–2039

    Article  CAS  Google Scholar 

  17. Wang J, Wang H, Zhang S, Zhang H, Zhao Y (2007) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n = 4,6,8,10,12) in aqueous solutions. J Phys Chem B 111:6181–6188

    Article  CAS  Google Scholar 

  18. Pino V, Yao C, Anderson J (2009) Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent-water mixtures. J Colloid Interface Sci 333:548–556

    Article  CAS  Google Scholar 

  19. Łuczak J, Jungnickel C, Joskowska M, Thöming J, Hupka J (2009) Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J Colloid Interface Sci 336:111–116

    Article  Google Scholar 

  20. Wang H, Wang J, Zhang S, Xuan X (2008) Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solution. J Phys Chem B 112:16682–16689

    Article  CAS  Google Scholar 

  21. Tariq M, Podgoršek A, Ferguson JL, Lopes A, Gomes MFC, Pádua AAH, Rebelo LPN, Lopes JNC (2011) Characteristics of aggregation in aqueous solutions of dialkylpyrrolidinium bromides. J Colloid Interface Sci 360:606–616

    Article  CAS  Google Scholar 

  22. Liu XF, Dong LL, Fang Y (2011) Synthesis and self-aggregation of a hydroxyl-functionalized imidazolium-based ionic liquid surfactant in aqueous solution. J Surf Deterg 14:203–210

    Article  CAS  Google Scholar 

  23. Dong B, Zhao X, Zheng L, Zhang J, Li N, Inoue T (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf A 317:666–672

    Article  CAS  Google Scholar 

  24. Blesic M, Swadźba-Kwaśny M, Holbrey JD, Lopes JNC, Seddon KR, Rebelo LPN (2009) New catanionic surfactants based on 1-alkyl-3-methylimidazolium alkylsulfonates, [CnH2n+1mim][CmH2m+1SO3]: mesomorphism and aggregation. Phys Chem Chem Phys 11:4260–4268

    Article  CAS  Google Scholar 

  25. Ao M, Xu G, Pang J, Zhao T (2009) Comparison of aggregation behaviors between ionic liquid-type imidazolium Gemini surfactant [C12-4-C12im]Br2 and its monomer [C12mim]Br on silicon wafer. Langmuir 25:9721–9727

    Article  CAS  Google Scholar 

  26. Ding YS, Zha M, Zhang J, Wang SS (2007) Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloid Surf A 298:201–205

    Article  CAS  Google Scholar 

  27. Liu Y, Yu L, Zhang S, Yuan J, Shi L, Zheng L (2010) Dispersion of multiwalled carbon nanotubes by ionic liquid-type Gemini imidazolium surfactants in aqueous solution. Colloid Surf A 359:66–70

    Article  CAS  Google Scholar 

  28. Vaghela NM, Sastry NV, Aswal VK (2011) Surface active and aggregation behavior of methylimidazolium-based ionic liquids of type [Cnmim][X], n = 4, 6, 8 and [X] = Cl, Br, and I in water. Colloid Polym Sci 289:309–322

    Article  CAS  Google Scholar 

  29. Dong B, Zhao X, Zheng L, Zhang J, Li N, Inoue T (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf A 317:666–672

    Article  CAS  Google Scholar 

  30. Geng F, Liu J, Zheng L, Yu L, Li Z, Li G, Tung C (2010) Micelle formation of long-chain imidazolium ionic liquids in aqueous solution measured by isothermal titration microcalorimetry. J Chem Eng Data 55:147–151

    Article  CAS  Google Scholar 

  31. Galgano PD, El Secoud OA (2011) Surface active ionic liquids: study of the micellar properties of 1-(1-alkyl)-3-methylimidazolium chlorides and comparison with structurally related surfactants. J Colloid Interface Sci 361:186–194

    Article  CAS  Google Scholar 

  32. Tondo DW, Leopoldino EC, Souza BS, Micke GA, Costa ACO, Fiedler HD, Bunton CA, Nome F (2010) Langmuir 26 (2010) 15754

  33. Li XW, Gao YA, Liu J, Zheng LQ, Chen B, Wu LZ, Tung CH (2010) Aggregation behavior of a chiral long-chain ionic liquid in aqueous solution. J Colloid Interface Sci 343:94–101

    Article  CAS  Google Scholar 

  34. Zhao Y, Chen X, Wang X (2009) Liquid crystalline phases self-organized from a surfactant-like ionic liquid C16mimCl in ethylammonium nitrate. J Phys Chem B 113:2024–2030

    Article  CAS  Google Scholar 

  35. Yan F, Texter J (2006) Surfactant ionic liquid-based micro emulsions for polymerization. Chem Commun 25:2696–2698

    Article  Google Scholar 

  36. Gaillon L, Sirieix-Plenet J, Letellier P (2004) Volumetric study of binary solvent mixtures constituted by amphiphilic ionic liquids at room temperature (1-alkyl-3-methylimidazolium bromide) and water. J Solution Chem 33:1333–1347

    Article  CAS  Google Scholar 

  37. Zech O, Thomaier S, Bauduin P, Rück T, Touraud D, Kunz W (2009) Micro emulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase. J Phys Chem B 113:465–473

    Article  CAS  Google Scholar 

  38. Safavi A, Maleki N, Farjami F (2010) Phase behavior and characterization of ionic liquids based micro emulsions. Colloid Surf A 355:61–66

    Article  CAS  Google Scholar 

  39. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New Jersey, pp 82–130

    Book  Google Scholar 

  40. Dupont J, Souza RF, Suarez PAZ (2002) Ionic liquid (Molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692

    Article  CAS  Google Scholar 

  41. Harkins WD, Brown F (1919) The determination of surface tension (free surface energy), and the weight of falling drops: the surface tension of water and benzene by the capillary height method. J Am Chem Soc 41:499–524

    Article  CAS  Google Scholar 

  42. Eastoe J, Nave S, Downer A, Paul A, Rankin A, Tribe K (2000) Adsorption of ionic surfactants at the air-solution interface. Langmuir 16:4511–4518

    Article  CAS  Google Scholar 

  43. Li ZX, Lu JR, Thomas RK (1997) Neutron reflectivity studies of the adsorption of aerosol-OT at the air/water interfaces: the surface excess. Langmuir 13:3681–3685

    Article  CAS  Google Scholar 

  44. Brown P, Butts C, Dyer R, Eastoe J, Grillo I, Guittard F, Rogers S, Heenan R (2011) Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir 27:4563–4571

    Article  CAS  Google Scholar 

  45. Mohamed A, Trickett K, Chin SY, Cummings S, Sagisaka M, Hudson L, Nave S, Dyer R, Rogers SE, Heenan RK, Eastoe J (2010) Universal surfactant for water, oils, and CO2. Langmuir 26:13861–13866

    Article  CAS  Google Scholar 

  46. Inoue T, Yamakawa H (2011) Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration. J Colloid Interface Sci 356:798–802

    Article  CAS  Google Scholar 

  47. Kalyansundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  Google Scholar 

  48. Turro NJ, Yekta A (1978) Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J Am Chem Soc 100:5951–5952

    Article  CAS  Google Scholar 

  49. Tachiya M (1975) Application of a generating function to reaction kinetics in micelles. Kinetics of quenching of luminescent probes in micelles. Chem Phys Lett 33:289–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Qing Lan Project (2010), the Fundamental Research Funds for the Central Universities (JUSRP211A10), the open fund of Zhejiang Zanyu Technology CO., Ltd. and the Jiangsu Key Laboratory of Fine Petrochemicals (KF0903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1517 kb)

About this article

Cite this article

Liu, X., Hu, J., Huang, Y. et al. Aggregation Behavior of Surface Active Dialkylimidazolium Ionic Liquids [C12C n im]Br (n = 1–4) in Aqueous Solutions. J Surfact Deterg 16, 539–546 (2013). https://doi.org/10.1007/s11743-012-1409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1409-1

Keywords

Navigation