Skip to main content
Log in

Micellar properties of tetradecyltrimethylammonium nitrate in aqueous solutions at various temperatures and in water-benzyl alcohol mixtures at 25 °C

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The micellar properties of tetradecyltrimethylammonium nitrate (C14TANO3) in aqueous solutions in the temperature range of 10 to 35 °C and in aqueous solutions of benzyl alcohol (BzOH) at 25 °C were studied conductometrically. The specific conductivity data served for the evaluation of critical micelle concentration, cmc, and the degree of ionization of the micelles, β, of the surfactant. From the temperature dependence of the cmc the thermodynamic parameters for micellization of C14TANO3 were calculated by applying Muller′s modified equation. BzOH was found to affect strongly the cmc and β values of the surfactant. The plot of the cmc/cmco ratio (where cmco is for pure water) as a function of BzOH molality, exhibits a characteristic break, which was attributed to the commencement of self-association of BzOH in aqueous solution at a molality of ca. 0.05. By applying the theoretical treatment suggested by Motomura for binary surfactant systems, the molar fraction of BzOH in the micelles at cmc, was estimated as a function of molality of the alcohol. C14TANO3 appears to be slightly more hydrophobic compared to the corresponding bromide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Samis CS, Hartley GS (1938) Trans Faraday Soc 34:1288

    CAS  Google Scholar 

  2. Ford WP, Ottewill RH, Parreira HC (1966) J Colloid Interface Sci 21:522

    CAS  Google Scholar 

  3. Emerson MF, Holtzer EW (1967) J Phys Chem 71:1898

    CAS  PubMed  Google Scholar 

  4. Underwood AL, Anacker EW (1987) J Colloid Interface Sci 117:242

    CAS  Google Scholar 

  5. Czapkiewicz J, Czapkiewicz-Tutaj B (1980) J Chem Soc Faraday Trans I 76(8):1663

    CAS  Google Scholar 

  6. Larsen JW, Magid LJ (1974) J Am Chem Soc 96:5774

    CAS  Google Scholar 

  7. Paredes S, Tribout M, Sepúlveda L (1984) J Phys Chem 88:1871

    CAS  Google Scholar 

  8. Sepúlveda L, Cortés J (1985) J Phys Chem 89:5322

    Google Scholar 

  9. Ohlendorf D, Interthal W, Hoffmann H (1986) Rheol Acta 25:468

    CAS  Google Scholar 

  10. Soltero JFA, Puig JE, Manero O, Schulz PC (1995) Langmuir 11:33337

    Google Scholar 

  11. Evans DF, Mitchell DJ, Ninham BW (1986) J Phys Chem 90:2817

    CAS  Google Scholar 

  12. Chen V, Evans DF, Ninham BW (1987) 91:1823

  13. Nydén M, Söderman O (1995) Langmuir 11:1537

    Google Scholar 

  14. Claesson P, Ninham BW (1992 Langmuir 8:1406

    Google Scholar 

  15. Brady JE, Evans DF, Warr GG, Grieser F, Ninham BW (1986) J Phys Chem 90:1853

    CAS  Google Scholar 

  16. Czapkiewicz J, Palma B, unpublished results

  17. Soldi V, Keiper J, Romsted LS, Cuccovia IM, Chaimovich H (2000) Langmuir 16:59

    Article  CAS  Google Scholar 

  18. González-Pérez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2002) Colloid Polym Sci 280:503

    Article  Google Scholar 

  19. González-Pérez A, Czapkiewicz J, Del Castillo JL, Rodríguez JR (2003) J Colloid Interface Sci 262:525

    Article  Google Scholar 

  20. Hoffmann H, Ulbright W (1977) Z Phys Chem NF 106:167

    CAS  Google Scholar 

  21. Shinoda K, Hutchinson E (1962) J Phys Chem 66:577

    CAS  Google Scholar 

  22. Evans DF, Wightman PJ (1982) J.Colloid Interface Sci 86:515

    CAS  Google Scholar 

  23. Aguiar J, Molina-Bolivar JA, Peula-Garcia JM, Carnero Ruiz C (2002) J Colloid Interface Sci. 255:382

    Google Scholar 

  24. Oremusová J, Greksaková O (1999) Tenside Surf Det 36:322

    Google Scholar 

  25. Zielinski R, Ikeda S, Nomura H, Kato S (1989) J Colloid Interface Sci 129:175

    CAS  Google Scholar 

  26. Gaillon L, Hamidi M, Leliévre J, Gaboriaud R (1997) J Chim Phys 94:707

    CAS  Google Scholar 

  27. Zana R (1980) J Colloid Interface Sci 78:331

    Google Scholar 

  28. Rodríguez J, González-Pérez A, Del Castillo JL, Czapkiewicz J (2002) J Colloid Interface Sci 250:438

    Article  Google Scholar 

  29. Muller N (1993) Langmuir 9:96

    CAS  Google Scholar 

  30. Kresheck GC (2001) J Phys Chem B 105:4380

    Article  CAS  Google Scholar 

  31. Shugihara G, Nakano TY, Sulthana SB, Rakshit AK (2001) J Oleo Sci 50:29

    Google Scholar 

  32. Chen LY, Lin SY, Huang CC (1998) J Phys Chem B 102:4350

    Article  CAS  Google Scholar 

  33. Motomura K, Yamanaka M, Aratono M (1984) Colloid Polym Sci 262:948

    CAS  Google Scholar 

  34. Pons R, Bury R, Erra P, Treiner C (1991) Colloid Polym Sci 269:62

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Xunta de Galicia, (Project PGIDIT03PXIB20601PR). A. González-Pérez is grateful to the University of Santiago de Compostela for his postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Pérez, A., Czapkiewicz, J., Del Castillo, J.L. et al. Micellar properties of tetradecyltrimethylammonium nitrate in aqueous solutions at various temperatures and in water-benzyl alcohol mixtures at 25 °C. Colloid Polym Sci 282, 1359–1364 (2004). https://doi.org/10.1007/s00396-004-1054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1054-y

Keywords

Navigation