Skip to main content
Log in

Physico-chemical Investigation of Mixed Micelle Formation Between Tetradecyltrimethylammonium Bromide and Dodecyltrimethylammonium Chloride in Water and Aqueous Solutions of Sodium Chloride

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductometric measurements have been employed to gain a detailed insight into the interactions between two cationic surfactants, tetradecyltrimethylammonium bromide (TTAB) and dodecyltrimethylammonium chloride (DTAC), in water and in an aqueous solution of sodium chloride. The experimental data were analyzed according to Rubingh’s model within the framework of the pseudophase separation model. The evaluated values of critical micelle concentration (cmc) were found to be lower than their corresponding cmc id values, signifying attractive interactions involving both components in the solutions. The micellar mole fractions (\( X_{1}^{\text{Rub}} \)) of TTAB evaluated by Rubingh’s model were always larger than the ideal values (\( X_{1}^{\text{id}} \)), signifying the higher involvement of TTAB in mixed micelles of TTAB and DTAC. Activity coefficients (\( f_{ 1}^{\text{Rub}} \) and \( f_{ 2}^{\text{Rub}} \)) were always below one in all cases signifying synergism in the mixed micelles. All the outcomes point to synergism and attractive interactions in the mixed systems. Values of excess Gibbs energy were evaluated by employing Rubingh’s model (\( \Delta G_{\text{ex}}^{\text{Rub}} \)) and the \( \Delta G_{\text{ex}}^{\text{Rub}} \) values obtained are negative. The values of \( \Delta H_{\text{m}}^{\text{o}} \) and \( \Delta S_{\text{m}}^{\text{o}} \) reveal that hydrophobic interaction is expected to be the binding force between TTAB and DTAC in aqueous media at lower temperatures, while both hydrophobic interactions as well as exothermic interactions are involved at higher temperatures. The interaction forces between the surfactants were found to be enhanced in the presence of NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cutler, W.G., Kissa, E.: Detergency: Theory and Practice. Marcel Dekker, New York (1987)

    Google Scholar 

  2. Stoye, D.: Paints, Coatings and Solvents. VCH Publishers, Weinheim (1993)

    Google Scholar 

  3. Luck, W.: Symposium on “Recent advances in the colouring of man-made fibres” the mode of action of non-ionic levelling agents. J. Soc. Dyers Colour. 74, 221–235 (1958)

    Article  CAS  Google Scholar 

  4. Reiger, M.M.: Surfactants in Cosmetics. Marcel Dekker, New York (1985)

    Google Scholar 

  5. Jacobi, G., Löhr, A.: Detergents and Textile Washing. VCH Publishers, Weinheim (1987)

    Google Scholar 

  6. Friberg, S.E.: Food Emulsions. Marcel Dekker, New York (1976)

    Google Scholar 

  7. Shah, D.O., Schechter, R.S.: Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press, New York (1977)

    Google Scholar 

  8. Kumar, D., Rub, M.A.: Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures. J. Phys. Org. Chem. 29, 394–405 (2016)

    Article  CAS  Google Scholar 

  9. Kumar, B., Tikariha, D., Ghosh, K.K., Barbero, N., Quagliotto, P.: Effect of polymers and temperature on critical micelle concentration of some gemini and monomeric surfactants. J. Chem. Thermodyn. 62, 178–185 (2013)

    Article  CAS  Google Scholar 

  10. Rub, M.A., Azum, N., Asiri, A.M.: Interaction of cationic amphiphilic drug nortriptyline hydrochloride with TX-100 in aqueous and urea solutions and the studies of physicochemical parameters of the mixed micelles. J. Mol. Liq. 218, 595–603 (2016)

    Article  Google Scholar 

  11. Rahman, M., Khan, M.A., Rub, M.A., Hoque, M.A.: Effect of temperature and salts on the interaction of cetyltrimethylammonium bromide with ceftriaxone sodium trihydrate drug. J. Mol. Liq. 223, 716–724 (2016)

    Article  CAS  Google Scholar 

  12. Palous, J.L., Turmine, M., Letellier, P.: Mixtures of nonionic and ionic surfactants: Determination of mixed micelle composition using cross-differentiation relations. J. Phys. Chem. B 102, 5886–5890 (1998)

    Article  CAS  Google Scholar 

  13. Rub, M.A., Azum, N., Asiri, A.M., Alfaifi, S.Y.M., Alharthi, S.S.: Interaction between antidepressant drug and anionic surfactant in low concentration range in aqueous/salt/urea solution: A conductometric and fluorometric study. J. Mol. Liquids 227, 1–14 (2017)

    Article  CAS  Google Scholar 

  14. Hua, X.Y., Rosen, M.J.: Synergism in binary mixtures of surfactants. I. Theoretical analysis. J. Colloid Interface Sci. 90, 212–219 (1982)

    Article  CAS  Google Scholar 

  15. Clint, J.H.: Surfactant Aggregation. Blackie (Glasgow and London), Chapman and Hall, New York (1992)

    Book  Google Scholar 

  16. Haque, M.E., Das, A.R., Rakshit, A.K., Moulik, S.P.: Properties of mixed micelles of binary surfactant combinations. Langmuir 12, 4084–4089 (1996)

    Article  CAS  Google Scholar 

  17. Rosen, M.J., Zhu, Z.H., Gao, T.: Synergism in binary mixture of surfactants. 11. Mixtures containing mono- and disulfonated alkyl-and dialkyldiphenylethers. J. Colloid Interface Sci. 157, 254–259 (1993)

    Article  CAS  Google Scholar 

  18. Rub, M.A., Khan, F., Sheikh, M.S., Azum, N., Asiri, A.M.: Tensiometric, fluorescence and 1H NMR study of mixed micellization of non-steroidal anti-inflammatory drug sodium salt of ibuprofen in the presence of non-ionic surfactant in aqueous/urea solutions. J. Chem. Thermodyn. 96, 196–207 (2016)

    Article  Google Scholar 

  19. Desai, T.R., Dixit, S.G.: Interaction and viscous properties of aqueous solutions of mixed cationic and nonionic surfactants. J. Colloid Interface Sci. 177, 471–477 (1996)

    Article  CAS  Google Scholar 

  20. Rodenas, E., Valiente, M., del Sol Villatruela, M.: Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl ether/hexadecyltrimethylammonium bromide micelles. J. Phys. Chem. 103, 4549–4554 (1999)

    Article  CAS  Google Scholar 

  21. Azum, N., Rub, M.A., Asiri, A.M., Khan, A.A.P., Khan, A.: Physico-chemical investigations of mixed micelles of cationic gemini and conventional surfactants: a conductometric study. J. Surfact. Deterg. 16, 77–84 (2013)

    CAS  Google Scholar 

  22. Treiner, C., Makayssi, A.: Structural micellar transition for dilute solutions of long chain binary cationic surfactant systems: a conductance investigation. Langmuir 8, 794–800 (1992)

    Article  CAS  Google Scholar 

  23. Picullel, L., Lindman, B.: Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: similarities and differences. Adv. Colloid Interface Sci. 41, 149–178 (1992)

    Article  Google Scholar 

  24. Holland, P.M., Rubingh, D.N. (eds.): Mixed Surfactant Systems. American Chemical Society, Washington D.C (1992)

    Google Scholar 

  25. Nagarajan, R.: Molecular theory for mixed micelles. Langmuir 1, 331–341 (1985)

    Article  CAS  Google Scholar 

  26. Rosen, M.J.: Surfactants and Interfacial Phenomena. Wiley, New York (2004)

    Book  Google Scholar 

  27. Griffiths, P.C., Whatton, M.L., Abbott, R.J., Kwan, W., Pitt, A.R., How, A.M., King, S.M., Heenan, R.K.: Small-angle neutron scattering and fluorescence studies of mixed surfactants with dodecyl tails. J. Colloid Interface Sci. 215, 114–123 (1999)

    Article  CAS  Google Scholar 

  28. Rubingh, D.N.: Mixed micelle solution. In: Mittal, K.L. (ed.) Solution Chemistry of Surfactants, vol. 1. Plenum, New York (1979)

    Google Scholar 

  29. Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. I 71, 1327–1334 (1975)

    Article  CAS  Google Scholar 

  30. Hossain, M.D., Hoque, M.A.: Interaction of cephradine monohydrate with cetyldimethylethylammonium bromide. J. Chem. Thermodyn. 69, 12–18 (2014)

    Article  CAS  Google Scholar 

  31. Hoque, M.A., Hossain, M.D., Khan, M.A.: Interaction of cephalosporin drugs with dodecyltrimethylammonium bromide. J. Chem. Thermodyn. 63, 135–141 (2013)

    Article  CAS  Google Scholar 

  32. Khan, F., Rub, M.A., Azum, N., Kumar, D., Asiri, A.M.: Interaction of an amphiphilic drug and sodium bis(2-ethylhexyl)sulfosuccinate at low concentrations in the absence and presence of sodium chloride. J. Solution Chem. 44, 1937–1961 (2015)

    Article  CAS  Google Scholar 

  33. Loh, W., Teixera, L.A.C., Lee, L.T.: Isothermal calorimetric investigation of the interaction of poly(N-isopropylacrylamide) and ionic surfactants. J. Phys. Chem. B 108, 3196–3201 (2004)

    Article  CAS  Google Scholar 

  34. McCleskey, R.B.: Precise conductance measurements and the determination of rate data. J. Chem. Eng. Data 56, 317–327 (2011)

    Article  CAS  Google Scholar 

  35. Hooshyar, H., Sadeghi, R.: Influence of sodium salts on the micellization and interfacial behavior of cationic surfactant dodecyltrimethylammonium bromide in aqueous solution. J. Chem. Eng. Data 60, 983–992 (2015)

    Article  CAS  Google Scholar 

  36. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Mixed micelle formation between amphiphilic drug amitriptyline hydrochloride and surfactants (conventional and gemini) at 293.15–308.15 K. J. Phys. Chem. B 114, 6354–6364 (2010)

    Article  CAS  Google Scholar 

  37. Mehta, S.K., Bhasin, K.K., Chauhan, R., Dham, S.: Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf. A 255, 153–157 (2005)

    Article  CAS  Google Scholar 

  38. Thakkar, K., Bharatiya, B., Shah, D.O., Bahadur, P.: Investigations on zwitterionic alkylsulfobetaines and nonionic Triton X-100 in mixed aqueous solutions: effect on size, phase separation and mixed micellar characteristics. J. Mol. Liq. 209, 569–577 (2015)

    Article  CAS  Google Scholar 

  39. Carale, T.R., Pham, Q.T., Blankschtein, D.: Salt effects on intramicellar interactions and micellization of nonionic surfactants in aqueous solutions. Langmuir 10, 109–121 (1994)

    Article  CAS  Google Scholar 

  40. Mukerjee, P., Korematsu, K., Okawauchi, M., Sugihara, G.: Effect of temperature on the electrical conductivity and the thermodynamics of micelle formation of sodium perfluorooctanoate. J. Phys. Chem. 89, 5308–5312 (1985)

    Article  CAS  Google Scholar 

  41. Schick, M.J.: Effect of temperature on the critical micelle concentration of nonionic detergents. Thermodynamics of micelle formation. J. Phys. Chem. 67, 1796–1799 (1963)

    Article  CAS  Google Scholar 

  42. Ray, A., Nemethy, G.: Micelle formation by nonionic detergents in water–ethylene glycol mixtures. J. Phys. Chem. 75, 809–815 (1971)

    Article  Google Scholar 

  43. Sharma, B., Rakshit, A.K.: Thermodynamics of micellization of a nonionic surfactant: Brij35 in aquo–sucrose solution. J. Colloid Interface Sci. 129, 139–144 (1989)

    Article  CAS  Google Scholar 

  44. Mesa, C.L.: Dependence of critical micelle concentrations on intensive variables: A reduced variables analysis. J. Phys. Chem. 94, 323–326 (1990)

    Article  Google Scholar 

  45. Crook, E.H., Trebbi, G.F., Fordyce, D.B.: Thermodynamic properties of solutions of homogeneous p, t-octylphenoxyethoxyethanols (OPE1-10). J. Phys. Chem. 68, 3592–3599 (1964)

    Article  CAS  Google Scholar 

  46. Oda, H., Nagadome, S., Lee, S., Ohseto, F., Sasaki, Y., Sugihara, G.: Thermodynamic study on micelle formation in water and alcohols and on adsorption at air/water interface of n-nonyl-β-D-thiomaltoside (NTM) used as a membrane protein solubilizer by surface tension measurements. J. Oil Chem. Soc. Jpn. 46, 559–572 (1997)

    Article  CAS  Google Scholar 

  47. Mosquera, V., del Río, J.M., Attwood, D., García, M., Jones, M.N., Prieto, G., Suarez, M.J., Sarmiento, F.: A study of the aggregation behavior of hexyltrimethylammonium bromide in aqueous solution. J. Colloid Interface Sci. 206, 66–76 (1998)

    Article  CAS  Google Scholar 

  48. Akhtar, F., Hoque, M.A., Khan, M.A.: Interaction of cefadroxyl monohydrate with hexadecyltrimethyl ammonium bromide and sodium dodecyl sulfate. J. Chem. Thermodyn. 40, 1082–1086 (2008)

    Article  CAS  Google Scholar 

  49. Ruiz, C.C., Díaz-López, L., Aguiar, J.: Self-assembly of tetradecyltrimethylammonium bromide in glycerol aqueous mixtures: a thermodynamic and structural study. J. Colloid Interface Sci. 305, 293–300 (2007)

    Article  Google Scholar 

  50. Das, C., Das, B.: Thermodynamic and interfacial adsorption studies on the micellar solutions of alkyltrimethylammonium bromides in ethylene glycol (1) + water (2) mixed solvent media. J. Chem. Eng. Data 54, 559–565 (2009)

    Article  CAS  Google Scholar 

  51. Rosen, M.J., Dahanayake, M.: Industrial Utilization of Surfactants, Principles and Practice. AOCS Press, Champaign (2000)

    Google Scholar 

  52. Basu Ray, G., Chakraborty, I., Ghosh, S., Moulik, S.P.: On mixed binary surfactant systems comprising MEGA 10 and alkyltrimethylammonium bromides: a detailed physicochemical study with a critical analysis. J. Colloid Interface Sci. 307, 543–553 (2007)

    Article  Google Scholar 

  53. Ahsan, Sk, Ali, M., Hossain, M.D., Hoque, M., Khan, M.A.: Micellar parameters and thermodynamics of interaction of fluoroquinolone drugs with cetyldimethylethyl- ammonium bromide. Indian J. Chem. A 55, 160–169 (2016)

    Google Scholar 

  54. Chauhan, S., Sharma, K.: Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzene sulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study. J. Chem. Thermodyn. 71, 205–211 (2014)

    Article  CAS  Google Scholar 

  55. Bales, B.L.: A definition of the degree of ionization of a micelle based on its aggregation number. J. Phys. Chem. B 105, 6798–6804 (2001)

    Article  CAS  Google Scholar 

  56. Bunton, C.A., Nome, F., Quina, F.H., Romsted, L.S.: Ion binding and reactivity at charged aqueous interfaces. Acc. Chem. Res. 24, 357–364 (1991)

    Article  CAS  Google Scholar 

  57. Jonsson, B., Lindman, B., Holmberg, K., Kronberg, B.: Surfactants and Polymers in Aqueous Solution. Wiley, Chichester (1998)

    Google Scholar 

  58. Romsted, L.S.: Rate Enhancements in Micellar Systems. Ph.D. thesis, Indiana University, Bloomington, IN (1975)

  59. Soldi, V., Keiper, J., Romsted, L.S., Cuccovia, I.M., Chaimovich, H.: Arenediazonium salts: New probes of the interfacial compositions of association colloids. 6. Relationships between interfacial counterion and water concentrations and surfactant head group size, sphere-to-rod transitions, and chemical reactivity in cationic micelles. Langmuir 16, 59–71 (2000)

    Article  CAS  Google Scholar 

  60. Oda, R., Narayanan, J., Hassan, P.A., Manohar, C., Salkar, R.A., Kern, F., Candau, S.J.: Effect of the lipophilicity of the counterion on the viscoelasticity of micellar solutions of cationic surfactants. Langmuir 14, 4364–4372 (1998)

    Article  CAS  Google Scholar 

  61. Hall, D.G.: Electrostatic effects in dilute solutions containing charged colloidal entities. J. Chem. Soc., Faraday Trans. Soc. 87, 3529–3535 (1991)

    Article  CAS  Google Scholar 

  62. Rub, M.A., Asiri, A.M., Naqvi, A.Z., Rahman, M.M., Khan, S.B.: Kabir-ud-Din: mixed micellization between amphiphilic drug promethazine hydrochloride and cationic surfactant (conventional as well as gemini). J. Mol. Liq. 177, 19–25 (2013)

    Article  CAS  Google Scholar 

  63. Kumar, D., Rub, M.A.: Effect of sodium taurocholate on aggregation behavior of amphiphilic drug solution. Tenside Surf. Deterg. 52, 464–472 (2015)

    Article  CAS  Google Scholar 

  64. Mata, J., Varade, D., Bahadur, P.: Aggregation behavior of quaternary salt based cationic surfactants. Thermochim. Acta 428, 147–155 (2005)

    Article  CAS  Google Scholar 

  65. Jalali, F., Shamsipur, M., Alizadeh, N.: Conductance study of the thermodynamics of micellization of 1-hexadecylpyridinium bromide in (water + cosolvent). J. Chem. Thermodyn. 32, 755–765 (2000)

    Article  CAS  Google Scholar 

  66. Chauhan, S., Kumar, K., Rana, D.S., Kumar, R., Chauhan, M.S.: A comparative study on the aggregation and thermodynamic properties of anionic sodium dodecylsulphate and cationic cetyltrimethylammonium bromide in aqueous medium: effect of the co-solvent n-methylacetamide. J. Surfactant Deterg. 19, 193–200 (2016)

    Article  CAS  Google Scholar 

  67. Islam, M.N., Kato, T.: Temperature dependence of the surface phase behavior and micelle formation of some nonionic surfactants. J. Phys. Chem. 107, 965–971 (2003)

    Article  CAS  Google Scholar 

  68. Robins, D.C., Thomas, I.L.: The effect of counterions on micellar properties of 2-dodecylaminoethanol salts: I. Surface tension and electrical conductance studies. J. Colloid Interface Sci. 26, 407–414 (1968)

    Article  CAS  Google Scholar 

  69. Chen, L.-J., Lin, S.Y., Huang, C.-C., Chen, E.-M.: Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf. A 135, 175–181 (1998)

    Article  CAS  Google Scholar 

  70. Stainsby, G., Alexander, A.E.: Studies of soap solutions. Part II.—factors influencing aggregation in soap solutions. Trans. Faraday Soc. 46, 587–597 (1950)

    Article  CAS  Google Scholar 

  71. Vamvaca, K., Jelesarov, I., Hilvert, D.: Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J. Mol. Biol. 382, 971–977 (2008)

    Article  CAS  Google Scholar 

  72. Owoyomi, O., Ige, J., Soriyan, O.O.: Thermodynamics of n-alkyltriphenylphosphnium bromides: a conductometric study. Chem. Sci. J. 25, 1–13 (2011)

    Google Scholar 

  73. Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Anamul Hoque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoque, M.A., Patoary, MOF., Rashid, M.M. et al. Physico-chemical Investigation of Mixed Micelle Formation Between Tetradecyltrimethylammonium Bromide and Dodecyltrimethylammonium Chloride in Water and Aqueous Solutions of Sodium Chloride. J Solution Chem 46, 682–703 (2017). https://doi.org/10.1007/s10953-017-0594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0594-y

Keywords

Navigation