Skip to main content
Log in

The Effect of Methanol on the Micellar Properties of Dodecyltrimethylammonium Bromide (DTAB) in Aqueous Medium at Different Temperatures

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The micellar properties of dodecyltrimethylammonium bromide (DTAB) in water and methanol water mixtures at different temperatures have been studied by conductivity and surface tension measurements. The critical micelle concentrations (CMC), degree of ionization (α), standard Gibbs free energy of micellization (\( \Delta G_{\text{m}}^{\text{o}} \)), standard enthalpy of micellization (\( \Delta H_{\text{m}}^{\text{o}} \)), standard entropy of micellization (\( \Delta S_{\text{m}}^{\text{o}} \)) and free energy of transfer (\( \Delta G_{\text{trans}}^{\text{o}} \)) were evaluated from conductivity data. The CMC, maximum excess surface concentration (\( \varGamma_{ \hbox{max} } \)), area occupied per surfactant molecule (\( A_{ \hbox{min} } \)), surface pressure at the CMC (\( {\pi}_{\text{cmc}} \)), packing parameter (P) and standard free energy interfacial adsorption \( (\Delta G_{\text{ads}}^{\text{o}} \)) were estimated from surface tension measurements. The CMC of DTAB was found to increase with increasing volume fraction of methanol and increasing temperature. Thermodynamic parameters and surface properties revealed that the addition of methanol changes the relevant physicochemical properties which affect the process of micellization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Flockhart BD (1957) The critical micelle concentration of sodiumdodecyl sulfate in ethanol-water mixtures. J Coll Sci 12:557–565

    Article  Google Scholar 

  2. Tanford C (1980) The hydrophobic effect-formation of micelles and Biological membranes, 2nd edn. Wiley, New York

    Google Scholar 

  3. Mata J, Varade D, Bahadur P (2005) Aggregation behavior of quaternary salt based cationic surfactants. Thermochemica Acta 428:147–155

    Article  CAS  Google Scholar 

  4. Rafati AA, Maleki H (2007) Mixed micellization of tetradecyltrimethylammonium bromide and triton X-100 in water-ethanol mixtures, using potentiometric and surface tension techniques. J Mol Liq 135:128–134

    Article  CAS  Google Scholar 

  5. Tardajos G, Junquera E, Aicart E (1994) Isothermal compressibility and isobaric thermal expansivity of linear and branched hexanols at 298.15 K. J Chem Eng Data 39:349–350

    Article  CAS  Google Scholar 

  6. Manabe M, Tokunaga A, Kawamura H, Shiomi M, Hiramatsu K (2002) The counterion releasing effect and the partition coefficient of branched alkanols in ionic micellar solution. Colloid Polym Sci 280:929–935

    Article  CAS  Google Scholar 

  7. Zana R (1995) Aqueous surfactant-alcohol systems: a review. Adv Colloid Interface Sci 57:1–64

    Article  CAS  Google Scholar 

  8. Bhattarai A, Nandi P, Das B (2006) The effects of concentration, relative permittivity and temperature on the transport properties of sodium polystyrenesulfonate in methanol-water mixed solvent media. J Polym Res 13:475–482

    Article  CAS  Google Scholar 

  9. Das S, Mondal S, Ghosh S (2013) Physicochemical studies on the micellization of cationic, anionic, and nonionic surfactants in water-polar organic solvent mixtures. J Chem Eng Data 58:2586–2595

    Article  CAS  Google Scholar 

  10. Lind JE Jr, Zwolenik JJ, Fuoss RM (1959) Calibration of conductance cells at 25 °C with aqueous Solutions of potassium chloride. J Am Chem Soc 81:1557–1559

    Article  CAS  Google Scholar 

  11. Singh M (2006) Survismeter type I and II for surface tension, viscosity measurements of liquids for academic, research and development studies. J Biochem Biophys Methods 67:151–161

    Article  CAS  Google Scholar 

  12. Kumar D, Chandra A, Singh M (2014) Influence of urea on shifting hydrophilic to hydrophobic interactions of Pr(NO3)3, Sm(NO3)3, and Gd(NO3)3 with BSA in aqueous citric acid: a volumetric, viscometric, and surface tension study. J Chem Eng Data 59:3643–3651

    Article  CAS  Google Scholar 

  13. Bhattarai A (2015) Studies of micellization of cationic-anionic surfactant system in water and methanol-water mixed solvents. J Solution Chem 44:2090–2105

    Article  CAS  Google Scholar 

  14. Moumouzias GD, Panopoulos K, Ritzoulis G (1991) Excess properties of the binary liquid system propylene carbonate + acetonitrile. J Chem Eng Data 36:20–23

    Article  CAS  Google Scholar 

  15. Naorem H, Devi SD (2006) Conductrometric and surface tension studies on the micellization of some cationic surfactants in water-organic solvent mixed media. J Surface Sci Technol 22:89–100

    CAS  Google Scholar 

  16. Manna K, Panda AK (2011) Physicochemical studies on the interfacial and micellization behavior of CTAB in aqueous polyethylene glycol media. J Surfact Deterg 14:563–576

    Article  CAS  Google Scholar 

  17. Zana R (1980) Ionization of cationic micelles: effect of the detergent structure. J Colloid Interface Sci 78:330–337

    Article  CAS  Google Scholar 

  18. Lianos P, Zana R (1980) Surfactant-alcohol mixed-micelle formation: cetyltrimethylammonium bromide-1 butanol system. Chem Phys Lett 72:171–175

    Article  CAS  Google Scholar 

  19. Zana R, Yiv S, Strazielle C, Lianos P (1981) Effect of alcohol on the properties of micellar systems. J Colloid Interface Sci 80:208–223

    Article  CAS  Google Scholar 

  20. Di Michele A, Brinch L, Di Profio P, Germani R, Savelli G, Onori G (2011) Effect of head group size, temperature and counterion specificity on cationic micelles. J Colloid Interface Sci 358:160–166

    Article  Google Scholar 

  21. Kabir-ud-Din N, Rub MA, Naqvi AZ (2011) Self-association behavior of amitriptyline hydrochloride as a function of temperature and additive (inorganic salts and urea) concentration. Colloid Surf B 82:87–94

    Article  CAS  Google Scholar 

  22. Yilmaz H (2002) Excess properties of alcohol-water system at 298.15 K. Turk J Phys 26:243–246

    CAS  Google Scholar 

  23. Bakshi MS, Kaur G (2000) Effects of glycol additives on the mixed micelle formation by hexadecyltrimethylammonium bromide + dodecylpyridinium chloride mixtures. J Mol Liq 88:15–32

    Article  CAS  Google Scholar 

  24. Bakshi MS, Doe H (2000) Hydrophobic hydration of cationic mixed micelles by alkoxyethanols in aqueous media. J Surfact Deterg 3:497–504

    Article  CAS  Google Scholar 

  25. Kim H-U, Lim K-H (2004) A model on the temperature dependence of critical micelle concentration. Colloids Surf A 235:121–128

    Article  CAS  Google Scholar 

  26. Ruiz CC (1999) Thermodynamics of micellization of tetradecyltrimethylammonium bromide in ethylene glycol-water binary mixtures. Colloid Polym Sci 277:701–707

    Article  Google Scholar 

  27. Ali A, Uzair S, Malik NA, Ali M (2014) Study of interaction between cationic surfactants and cresol red dye by electrical conductivity and spectroscopy methods. J Mol Liq 196:395–403

    Article  CAS  Google Scholar 

  28. Nagarajan R, Wang C-C (2000) Theory of surfactant aggregation in water/ethylene glycol mixed solvents. Langmuir 16:5242–5251

    Article  Google Scholar 

  29. Chung JJ, Lee SW, Kim YC (1992) Solubilization of alcohols in aqueous solution of cetylpyridinium chloride. Bull Korean Chem Soc 13:647–649

    CAS  Google Scholar 

  30. Islam MN, Kato T (2003) Thermodynamic study on surface adsorption and micelle formation of poly(ethylene-glycol) mono-n-tetradecyl ethers. Langmuir 19:7201–7205

    Article  CAS  Google Scholar 

  31. Rosen MJ (2004) Surfactants and interfacial phenomenon, 3rd edn. Wiley, New York

    Book  Google Scholar 

  32. Mukharjee I, Moulik SP, Rakshit K (2013) Tensiometric determination of Gibbs surface excess and micelle point: a critical revisit. J Colloid Interface Sci 394:329–336

    Article  Google Scholar 

  33. Sugihara G, Miyazono A, Nagadome S, Oda T, Hayasi Y, Ko JS (2003) Adsorption and micelle formation of mixed surfactant systems in water II: a combination of cationic gemini-type surfactant with MEGA-10. J Oleo Sci 52:449–461

    Article  CAS  Google Scholar 

  34. Israelachivili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  35. Pan A, Naskar B, Prameela GKS, Phani KBVN, Mandal AB, Bhattacharya SC, Moulik SP (2012) Amphiphile behavior in mixed solvent media I: self-aggregation and ion association of sodium dodecylsulfate in 1,4-dioxane-water and methanol-water media. Langmuir 28:13830–13843

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sujit Kumar Shah is thankful to the University Grants Commission (UGC), Government of Nepal, for his Ph.D. fellowship. Thanks also goes to the Head of the Department of Chemistry, M.M.A.M.C., Tribhuvan University, Biratnagar, Nepal for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajaya Bhattarai.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.K., Chatterjee, S.K. & Bhattarai, A. The Effect of Methanol on the Micellar Properties of Dodecyltrimethylammonium Bromide (DTAB) in Aqueous Medium at Different Temperatures. J Surfact Deterg 19, 201–207 (2016). https://doi.org/10.1007/s11743-015-1755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1755-x

Keywords

Navigation