Skip to main content

Myeloid leukocytes’ diverse effects on cardiovascular and systemic inflammation in chronic kidney disease

Abstract

Chronic kidney disease’s prevalence rises globally. Whereas dialysis treatment replaces the kidney’s filtering function and prolongs life, dreaded consequences in remote organs develop inevitably over time. Even milder reductions in kidney function not requiring replacement therapy associate with bacterial infections, cardiovascular and heart valve disease, which markedly limit prognosis in these patients. The array of complications is diverse and engages a wide gamut of cellular and molecular mechanisms. The innate immune system is profoundly and systemically altered in chronic kidney disease and, as a unifying element, partakes in many of the disease’s complications. As such, a derailed immune system fuels cardiovascular disease progression but also elevates the propensity for serious bacterial infections. Recent data further point towards a role in developing calcific aortic valve stenosis. Here, we delineate the current state of knowledge on how chronic kidney disease affects innate immunity in cardiovascular organs and on a systemic level. We review the role of circulating myeloid cells, monocytes and neutrophils, resident macrophages, dendritic cells, ligands, and cellular pathways that are activated or suppressed when renal function is chronically impaired. Finally, we discuss myeloid cells’ varying responses to uremia from a systems immunology perspective.

Clinical relevance of chronic kidney disease for cardiovascular disease

Chronic kidney disease (CKD) is defined as abnormalities of kidney structure or function, present for more than 3 months, particularly in patients with impaired glomerular filtration rate (GFR < 60 ml/min/1.73m2) [63, 145]. CKD is an increasingly prevalent condition and affects approximately 15% of the adult population worldwide [14, 42, 114, 129, 132]. The international Kidney Disease: Improving Global Outcome organization categorizes disease severity based on cause, GFR and level of albuminuria. Three stages, based on the degree of albuminuria, and five stages, dependent on the GFR, are distinguished [62, 63]. CKD’s early to intermediate stages dominate the prevalence statistics [49]. Causes for CKD are manifold, yet traditional cardiovascular risk factors such as male sex, age, hypertension, hyperlipoproteinemia and diabetes also propel CKD progression. Further, genetic and epigenetic mechanisms impact CKD development [145].

The Global Burden of Disease Study estimates that CKD caused at least 1.2 million deaths in 2017 [32]. Concomitant cardiovascular disease and an elevated susceptibility for infections fuel mortality’s sharp increase. Indeed, mortality rises significantly and in a stage-dependent manner when CKD is present. In a meta-analysis including > 14 million participants from 14 different studies, all-cause mortality risk was unrelated to a GFR between 75 and 105 ml/min but associated to lower GFR with an adjusted hazard ratio at GFR 60, 45, and 15 ml/min of 1.18 (95% confidence interval CI 1.05–1.32), 1.57 (CI 1.39–1.78) and 3.14 (CI 2.39–4.13), respectively, as compared to normal kidney function (GFR 95 ml/min) [14]. Similar results were seen in an integrated system of health care analysis including data from 1.120.295 adults (Fig. 1) [42]. In this study, the adjusted hazard ratio for death was 1.2 (CI 1.1–1.2) with a GFR of 45–59 ml/min, 1.8 (CI 1.7–1.9) with a GFR of 30–44 ml/min, 3.2 (CI 3.1–3.4) with a GFR of 15–29 ml/min and 5.9 (CI 5.4–6.5) with a GFR of less than 15 ml/min. Accordingly, the same cohorts displayed inversely increased, adjusted hazard ratios for cardiovascular events with 1.4 (CI 1.4–1.5), 2.0 (CI 1.9–2.1), 2.8 (CI 2.6–2.9) and 3.4 (CI 3.1–3.8), respectively [42].

Fig. 1
figure 1

CKD elevates all-cause and cardiovascular mortality. The adjusted hazard ratios (HI) for all-cause mortality (black line) and cardiovascular mortality (blue line) increase in a GFR-dependent manner in patients with CKD. Data for this graph are adopted from Go et al., NEJM 2004 [42]

CKD severity correlates with the increase in cardiovascular risk [70]. In the National Health and Nutritional Examination Survey (NHANES), cardiovascular disease burden was investigated in 1428 CKD stage I-IV patients between 2001 and 2010. In this cohort, the prevalence of cardiovascular co-morbidities rose markedly, with 19.6% having coronary artery disease, 10.3% having a stroke, 9.7% congestive heart failure, and an overall risk for cardiovascular disease of 28.4% [70]. Other investigations also showed an increase in overall risk for cardiovascular disease of 40% in CKD patients and, as expected, cardiovascular disease was most pervasive in CKD stage IV [13]. Renal replacement therapy associates with a tremendously risen (~ 30-fold) mortality risk [70]. Consequently, cardiovascular mortality is about 57% higher when CKD is present [13, 22, 42, 104]. Importantly, patients suffering from CKD are more likely to die from cardiovascular co-morbidities than from end-stage renal failure, even after adjustment for cardiovascular risk factors [18, 42, 61]. Whereas CKD and cardiovascular disease share multiple risk factors, statin therapy fails to curb cardiovascular events in end-stage renal failure [143]. Although pharmacotherapies that alter intrarenal hemodynamics (e.g. renin–angiotensin–aldosterone pathway modulators and SGLT2 inhibitors) can preserve kidney function by reducing intraglomerular pressure and novel antifibrotic agents have the potential to retard disease progression, no specific treatments are yet available mitigating CKD’s risk on the vasculature. Moreover, atypical symptoms or the lack of cardinal clinical signs in CKD may further delay timely treatment [111].

Aside from vascular disease, numerous studies associate hemodialysis treatment in end-stage renal disease with accelerated aortic valve calcification and stenosis development. More than half of patients on renal replacement therapy display aortic valve pathologies, as assessed by computed tomography scans in a study with 151 patients [10]. Evidence emerges that aortic valve remodeling may already occur in the early stages of kidney failure in a GFR-dependent manner [10, 46, 133]. Mortality rises markedly in patients with aortic valve stenosis that undergo aortic valve replacement surgery, when CKD is present. In a multi-center study including data from the German Aortic Valve Registry, CKD’s impact on mortality risk was investigated in nearly 30,000 patients from 88 centers undergoing surgical aortic valve replacement or transcatheter aortic valve implantation (TAVI). One-year mortality hazard ratios increased gradually with declining renal function after transcatheter aortic valve implantation, ranging from 1.22 in CKD stage III to 3.95 in CKD stage V, compared to patients in CKD’s early stages [83]. In summary, CKD is an independent risk factor for cardiovascular and valvular disease.

End-stage renal failure engenders a susceptible environment for infections; bloodstream infections and pneumonia are the second most common cause of death in patients with CKD. Accordingly, mortality risk due to infections rises tremendously, up to 50-fold, in end-stage renal failure [116]. In analogy to cardiovascular disease, even mild to moderate stages of kidney disease raise infection rates and subsequent mortality [56, 142].

In a cohort of 25.675 patients, the risk for bloodstream infections increased GFR-dependently with hazard ratios of 1.24 (1.01–1.52), 1.59 (1.24–2.04) and 3.54 (2.69–4.69) when compared to individuals with a GFR above 60 ml/min for CKD stage IIIa, IIIb, and IV, respectively. In turn, community-onset bloodstream infections elevate the risk of death within 30 days in patients with CKD stage IV or below (hazard ratio, 4.10; 2.06–8.14) [58]. Whereas CKD’s advanced stages correlate with the risk of infection, distinct co-morbidities may impact the threshold for infections in the early stages [93].

Together, abundant clinical studies provide evidence for CKD’s perilous role in cardiovascular disease development. CKD is accompanied by a malfunction of the immune system affecting leukocyte interactions and activity on a cellular and subcellular level. We will review how a dysfunctional immune system accelerates vascular and valvular disease progression in CKD. Systemic effects on the contrary interfere with anti-bacterial defense mechanisms. Tissue and cell type may decisively determine these diverse effects on the immune system. Here, we provide a summary of the immune system’s facets in CKD’s two most important complications.

Chronic kidney disease impacts myeloid cell behavior in atherosclerosis

Uremic toxins alter myeloid cells in chronic kidney disease

The innate immune system comprises different cell types. Major circulating contenders include neutrophilic granulocytes with a short life span of approximately one day. Blood monocytes are less frequent in mice and humans but exhibit a longer life span ranging from days to a few weeks [89]. The use of elaborate mouse models has greatly contributed to the refined understanding of myeloid cell biology in steady-state and disease in the last two decades: blood myeloid cell levels fluctuate in a circadian pattern and are replenished by bone marrow supply at all times [89]. Tissue-resident macrophages, which populate various tissues prenatally–independent of definitive hematopoiesis–are myeloid cells [25, 36]. They are more long-living than their circulating comrades, and proliferation significantly maintains population size in the steady-state in various organs. Bone marrow-derived, circulating monocytes infiltrate tissues and give rise to macrophages ubiquitously in an acute or chronic injury [89]. Whereas monocyte recruitment feeds the inflammatory myeloid cell pool in atherosclerosis in the early stages, macrophage (i.e., foam cell) proliferation prevails and expands the vascular population in advanced stages [89]. Neutrophils engender atherosclerotic plaque instability by employing eroding enzymes or worsen the ischemic injury by forming extracellular traps (NETs) [52]. CKD amplifies existing, harmful pathways evoked by risk factors such as diabetes and hypercholesterolemia or–worst case–activates orthogonal mechanisms accelerating atherosclerosis (Suppl. Table 1). Phenotypically, excessive calcification is a typical feature of atherosclerotic lesions in CKD [7].

Monocytes isolated from uremic patients exhibit various signs of activation. They display increased adhesiveness, which fosters extravasation through the endothelial barrier, and an augmented migratory capacity [8]. While this study only included 28 patients, other studies corroborate CKD’s significant effects on monocytes in humans. For instance, CKD goes along with elevated numbers of CD14+ CD16+ monocytes, also known as the intermediate monocytic phenotype in humans, associated with endothelial injury and future cardiovascular events [90, 107, 110]. For an overview of human monocyte subtypes, see Fig. 2. A subtype of intermediate monocytes displaying high levels of the human leukocyte antigen (HLA) -DR enriches in patients with CKD stage I to V and correlates with renal function, i.e. GFR, as shown in a study involving 187 patients. Likewise, granulocytic neutrophils inversely correlate with renal function [90]. Ex-vivo, a uremic environment nudges monocytes from healthy donors towards a more inflammatory state and induces surface CD14 and CD16 expression [9]. While ex-vivo and in-vitro studies must be interpreted cautiously as cells’ transcriptional program adapts promptly to an altered exterior and the study’s sample size was small, these findings suggest an immediate immune-altering effect initiated by the uremic milieu. In this context, expression of the C–C chemokine receptor-2 (CCR2), which mediates monocyte recruitment and homing, rises in patients undergoing hemodialysis [96]. In this study, which included 83 patients, CCR2 levels correlate with markers of atherosclerosis, such as the carotid intima-media thickness. Uremia may also drive monocytic CX3CR1 expression–the fractalkine receptor facilitates adhesion to the endothelium–with consequences for monocyte homing, as demonstrated in a small study examining blood monocytes from patients receiving renal hemodialysis [21, 118]. Other studies found augmented toll-like receptor (TLR) -2 and -4 expression on blood monocytes in patients with CKD, rendering them more sensitive to consecutive inflammatory stimuli [45, 66]. Uremic signaling, however, is not restricted to a single route. Various pathways may be activated and mediate uremia’s effects, such as the inflammatory Wnt/β-catenin cascade in patients with CKD stage IV and V [2]. Post-translational protein modifications, such as acetylation of the Y-box binding protein-1 in monocytes, may further amplify inflammation, when hemodialysis is required [26]. There is ample evidence that CKD impacts myeloid cell behavior, however, some of these studies’ small sample sizes should be considered for interpretation and generalizability.

Fig. 2
figure 2

Human and murine monocyte subsets. A Human monocytes can be categorized by surface expression of CD14 and CD16 into classical, intermediate and non-classical monocytes [60, 90, 147, 154]. Classical monocytes do not express CD16. They are the most frequent subtype, mediate antimicrobial defense and display a high capacity of adhesion, migration and phagocytosis [60, 90]. Intermediate monocytes make up only ~ 5% of the population [112]. They express CD16 and are involved in regulation of apoptosis, antigen presentation and T-cell activation [60]. Non-classical monocytes express higher levels of CD16 than intermediate monocytes, do not extravasate but patrol the vessels [127]. They are involved in Fc-Receptor-mediated phagocytosis, anti-viral response and T-cell activation [60, 90, 112, 127, 147, 154]. In mice, equivalent monocyte subsets are identified by surface expression of Ly6C (usually by flow cytometry), whereas all monocytes express CD11b (an integrin) and CD115 (the macrophage colony-stimulating factor-1 receptor). Ly6Chigh monocytes are considered equivalent to classical monocytes and Ly6Clow monocytes to the non-classical subset [16, 86]. B CD14 is a co-receptor for toll-like receptor-4 (TLR-4) and myeloid differentiation factor-2 (MD-2). CD14 facilitates sensing of lipopolysaccharide, pathogen-associated molecular patterns (PAMPs) and opsonized particles. The cellular response is generally pro-inflammatory [149]. CD16 (Fcγ-receptor III) mediates antibody-dependent cytotoxic effects, clearance of opsonized pathogens and fosters calcium mobilization, ROS-release and phagocytosis [151]

Considering the plethora of pathways involved, the question arises of what stimuli initiate inflammation in uremia. In CKD, extensive mineral remodeling involves osteoblasts and osteocytes, the primary source of fibroblast growth factor-23 (FGF-23). The 32-kDa hormone level rises in CKD’s early to advanced stages. Indeed, FGF-23 drives macrophage proliferation via FGF receptor-1c and instigates tumor necrosis factor (TNF)-α generation in-vitro, linking bone remodeling to myeloid cell inflammation in CKD [67, 84]. Next to FGF-23, much effort has been spent to elucidate the role of another large group of potential mediators: so-called uremic toxins are small molecules that evade hemodialysis by binding larger-sized plasma albumin. Dozens of uremic retention solutes have been categorized to date, indoxyl sulfate and p-cresyl sulfate are among the best-studied (Table 1). Effects are not confined to white blood cells, as uremic toxins also hamper the endothelium, vascular smooth muscle cells, and others. But the evidence for wide-ranged, immune-stimulatory effects is vast:

Table 1 Effect of uremic toxins on different myeloid cell types

For instance, guanidino compounds induce TNF-α secretion and CD14 expression in monocytes in-vitro. Atherogenic homocysteine activates the NF-ĸB pathway in THP-1-derived macrophages in cell culture experiments [41, 117]. A very robust study conducted by Nakano and colleagues demonstrated that organic anion transporting polypeptides facilitate indoxyl sulfate uptake into macrophages. Consecutive NOTCH signaling triggers the release of pro-inflammatory interleukin (IL)-1β, an effect attenuated by delta-like ligand 4 inhibition in-vitro [92]. The use of nanoparticle-mediated silencing of the organic anion transport polypeptide in mice demonstrates the pathway’s relevance also in-vivo.

Another study confirms uremic toxins’ inflammatory effects in the vasculature ex-vivo. A brief exposure of rats to indoxyl sulfate or p-cresyl sulfate for four days led to profound inflammatory and pro-coagulatory signatures in aortic tissue, as assessed by an unbiased quantitative proteomics approach followed by gene ontology analyses. Acute-phase signaling pathways dominated in the analyses [99]. The underlying cell types driving inflammation in this setting remain elusive.

Finally, accumulation of p-cresyl sulfate and advanced glycation end-products ramp up reactive oxygen species generation in monocytes, as shown in ex-vivo and in-vitro experiments [40, 119]. Similar observations were made in neutrophils. When isolated from patients with CKD and subsequently challenged with PMA (phorbol-12-myristate-13-acetate), reactive oxygen species release amplified, an effect mainly conveyed by uremic toxins. Thus, neutrophil priming is central to low-grade inflammation and oxidative stress surplus in CKD, which occurs before renal replacement therapy is required [17, 122].

The question arises by which subcellular mechanisms uremic toxins trigger the litany of inflammatory responses [38]. While uremic toxins indirectly promote inflammatory gene transcription, e.g. via NOTCH signaling, binding to post-translationally modified proteins likely contributes to systemic inflammation. Further mechanisms probably exist but remain to be discovered [28, 85, 92].

Compromised gut integrity amplifies cardiovascular inflammation in CKD

While the role of uremic retention solutes has garnered much attention, it recently emerged that compromised remote tissues in CKD impact inflammation and myeloid cell function. For instance, an impaired gut barrier function has been described, which is accompanied by profound changes in the intestinal microbial flora composition [134, 146]. The mechanisms perturbing the intestine’s barrier function remain incompletely understood [113]. Next to metabolic acidosis, volume overload with consecutive wall congestion conceivably contributes to the gut’s leakiness in CKD, as described for heart failure [43]. Distinct strains’ high pathogenicity–so-called pathobionts–such as Bacteroides, Paraprevotella spp., or Helicobacter hepaticus pose a particular threat [4]. Overgrowth of potentially pathogenic bacterial species is frequent in patients undergoing hemodialysis, and the disrupted commensal bacterial flora generates surplus trimethylamine-N-oxide (TMAO) [125, 150]. The microbiota metabolite not only correlates with cardiovascular risk. TMAO signals via macrophage CD36-dependent MAPK/JNK-pathway and promotes atherosclerosis in mice [33]. The leaky and permeable gut barrier facilitates bacteria translocation to extra-intestinal sites such as mesenteric lymph nodes, spleen and liver, and blood levels of bacterial DNA associate with serum levels of C-reactive protein (CRP) and IL-6 [141, 146]. Following translocation, bacteremia and endotoxemia may instigate systemic inflammation, yet, clear evidence that bacterial elements in CKD augment myeloid cell-driven vascular inflammation is still missing. In the steady-state, microbiota-derived peptidoglycan primes bone marrow neutrophils via the pattern recognition receptor nucleotide-binding, oligomerization protein-1 (Nod1) and augments systemic immunity [15]. While desirable for host defense, this priming may conceivably be harmful for the inflamed vasculature. Whether this mechanism, however, is compromised in CKD remains unclear. Furthermore, the ramification may not be entirely inflammatory, as prolonged toll-like receptor activation can contribute to immunosuppression [4].

Myeloid cells’ catalyzing role in CKD-driven vascular inflammation

In light of atherosclerosis’ chronic inflammatory nature and myeloid cells’ aberrant features in CKD, a multitude of studies examined their contribution to vascular disease progression in experimental CKD. For an overview, please see Fig. 3. As described for traditional cardiovascular risk factors, CKD may trigger endothelial signaling cues guiding monocytic leukocyte influx into the arterial wall. For example, levels of circulating VCAM-1 and ICAM-1 increase in patients receiving hemodialysis, as demonstrated in a study involving 106 patients [101]. The surge’s cause is not entirely clear but likely reflects the enhanced vascular inflammation. In-vitro, indoxyl sulfate signals via the c-Jun N-terminal kinase pathway inducing expression of E-selectin in endothelial cells [57]. Therefore, CKD-mediated signs of vascular activation are partly redundant (Suppl. Table 1) [11, 57, 101]. The uremic milieu further impairs the glycocalix’ integrity, the physiologic layer of proteoglycans and glycoproteins covering the endothelium’s luminal surface, as serum markers reflecting glycocalix injury rise in patients with CKD. The altered glycocalix composition may in turn facilitate monocyte extravasation [75, 108]. In response to macrophage- and granulocyte–macrophage-colony stimulating factor (M-CSF; GM-CSF) secreted by the endothelium and other vessel wall cell types, monocytes differentiate into macrophages [39]. Increased M-CSF levels in hemodialysis patients may fuel macrophage development once monocytes infiltrate the nascent lesion [94]. However, the source for M-CSF’s surplus in this setting requires further investigations and experimental evidence for this mechanism is still missing [94]. While GM-CSF treatment exacerbates atherosclerosis in non-uremic mice, it remains unclear whether GM-CSF promotes vascular inflammation in CKD. GM-CSF’s role in CKD has been investigated in the context of vaccination, which we discuss below [47].

Fig. 3
figure 3

Remote organ complications in chronic kidney disease. Myriad remote organ pathologies accompany CKD and increase the susceptibility to infections, the incidence of aortic valve calcification, and atherosclerosis [10, 56, 70]. Alterations at the site of lesion formation include augmented ROS production of neutrophils, an increase of intermediate monocytes with enhanced adhesiveness and migratory capacity, and elevated TLR-2 and -4 expression [17, 45, 66, 90]. The WNT/β-catenin pathway is involved [2]. CKD lowers the expression of monocytic calcium-sensing receptors, which may accelerate the vessel wall’s calcification [82]. Under uremic conditions, macrophages’ and foam cells’ proliferation rates increase [94]. Likewise, pro-inflammatory cytokine secretion amplifies [11, 101]. The endothelium cranks up expression of adhesion molecules such as E-selectin, VCAM and ICAM in response to uremia [11, 57, 101.

A perturbed equilibrium generates an excess of reactive oxygen species in CKD, which impacts atherosclerosis and the underlying myeloid cell population. CKD’s enabling effects on reactive oxygen molecules enhances low-density lipoprotein oxidation, consecutively, lesional macrophages’ inflammatory profile amplifies [27, 39, 48]. Urea dissociation creates reactive isocyanic acid which non-enzymatically and irreversibly binds protein amino-groups, especially lysine residues. This process–termed carbamylation–promotes molecular ageing and associates with atherosclerosis [44, 135]. The heme enzyme myeloperoxidase (MPO) augments carbamylation through the oxidation of thiocyanate. Myeloperoxidase also converts low-density lipoprotein into a more atherogenic form, as shown in elaborate experiments in-vitro [105]. In a CKD mouse model using atherosclerosis-prone LDL receptor-deficient mice, lesional macrophages enrich myeloperoxidase and the enzyme’s activity heightens, suggesting a disease-promoting role via carbamylation [68, 153]. Future experiments using–currently unavailable–MPO reporter or conditional knockout mouse models will allow to obtain more insights into MPO’s role in CKD-driven vascular inflammation. Finally, the increase in myeloperoxidase and distinct uremic metabolites such as asymmetric dimethylarginine diminish nitric oxide (NO) bioavailability with consequences for the endothelium’s function in patients with CKD [19, 78].

Additional myeloid lineage cells may promote atherogenesis in CKD. Mast cells increasingly accumulate in the shoulder and basis of atherosclerotic plaques when CKD is present but do not associate with calcification [139]. In a small case–control study examining human aortic tissue samples of 10 individuals, dendritic cells enriched in the tunica intima, the innermost vascular layer, in patients with CKD [54]. Yet, a detailed understanding of dendritic and Mast cells’ relevance in CKD-driven atherosclerosis is lacking. Activation of CD4 and CD8 T-lymphocytes conceivably plays a role, as demonstrated for vascular inflammation without concomitant CKD. It should be noted that non-inflammatory factors such as phosphate and calcium deposition may promote atherosclerosis progression in CKD, emphasizing the processes’ multitude.

Numerous clinical studies provide compelling findings for augmented vascular inflammation in CKD. Coronary vessels exhibit a greater extent of plaque formation with an increased local inflammatory milieu in CKD [91, 115]. Urea plasma levels and glomerular filtration rates are independent predictors of arterial wall inflammation [8]. Elevated serum levels of CRP, IL-6, TNF-α, and monocyte chemotactic protein-1 accompany heightened atherosclerotic plaque inflammation in patients with end-stage renal failure [11, 101]. The neutrophil-to-lymphocyte ratio correlates with the cardiovascular risk profile in patients with CKD [97]. A subset of low-density granulocytes associates with vascular calcification in patients receiving peritoneal dialysis [109]. While these clinical studies did not exclusively focus on myeloid cells, they feed the assumption for inflammation’s causative role in CKD-accelerated atherosclerosis.

Chronic kidney disease impacts aortic valve remodeling and inflammation

Tricuspid aortic valves consist of three annulus-attached, semilunar cusps. Human aortic leaflets are thin (~ 180 µm in diameter) yet no simple structures. Five connective tissue layers build the leaflets’ backbone, which is interspersed with mesenchyme-originating interstitial cells. Endothelium covers and protects the leaflets’ surface [87]. Recent findings further indicate the existence of a valve-resident leukocyte population, as CD45-positive leukocytes prenatally populate the endocardial cushion of developing valves as early as embryonic day 14.5 in mice [5]. CCR2-expressing macrophages are present shortly after birth. Mapping valve leukocyte fate revealed an increasing accumulation of CD45-positive cells in intact murine valve tissue over time [5]. At the age of 16 months, approximately 11% of the examined murine valvular cells were leukocytes. CD45-positive cells predominantly accumulate at the cusps’ distal tips but also adjacent to the ventricular layer in young and adult mice. Lineage tracing experiments suggest that myeloid origin i.e. macrophages and dendritic cells dominates the heart valve leukocyte population [55].

Aortic valves are subjected to a humongous workload; they open and close ~ 86.000 times per day and ~ 2.5 billion times by the age of 80 years (based on an average heart rate of 60 beats per minute). Hence, the decades-prevailing view that passive mechanisms, i.e., continuous exposure to physical force and ectopic mineral deposition ultimately evoke valve degeneration. More recent insights shifted this paradigm suggesting leaflet remodeling and calcification involves activation of resident interstitial, endothelial and inflammatory cells [77, 124, 144]. Attempts to reseed valvular matrices with interstitial and endothelial cells may reflect this redirected perception [51, 74]. That inflammatory mechanisms impact cusp remodeling is now increasingly appreciated: TLR-3 signaling induces an osteogenic response in valvular interstitial cells in-vitro. Likewise, myeloid cell supernatant promotes osteogenic differentiation of interstitial cells in-vitro [73]. Disruption of anti-inflammatory IL-1-receptor signaling fuels inflammation–especially in the leaflet’s lamina spongiosa–and triggers subendothelial macrophage accumulation in mice. IL-1β, the prototypical inflammatory, macrophage-derived cytokine, amplifies remodeling via myofibroblast activation [123]. The TNF-α related ligand TRAIL may foster human valve calcification [29]. NOTCH1 signalling’s role for congenital valve anomalies and calcification is well-established [30]. That NOTCH1 haploinsufficiency alters macrophage major histocompatibility complex (MHC) II expression levels in aortic valves implies that inflammation potentially contributes to NOTCH1’s striking phenotype [106]. Examining aortic valves obtained from 285 patients undergoing surgical valve replacement revealed the presence of chronic inflammatory infiltrates in 28% of the cases. Intriguingly, inflammatory infiltrates correlated with the remodeling process and the peak transvalvular gradient [20].

CKD propels premature valve calcification and stenosis. The process is multilayered; plenty mechanisms are suspected partaking in uremia-induced valve remodeling: endothelial dysfunction due to CKD fluid overload-related heightened shear stress, lipid infiltration (though statin therapy is ineffective), reactive oxygen species surplus, bone metabolism dysregulation, calcium-phosphate imbalance and ectopic calcification, to name a few [128]. Data on how CKD shapes the inflammatory environment within the valve on the contrary are relatively scarce compared to vascular pathologies; and whether the same pathways are involved as to when CKD is not compromised is largely unknown. In a recent histologic study examining human stenotic aortic valve specimens, macrophages especially clustered in areas of valve calcification. While 8.3% of these patients received hemodialysis treatment, information whether early stages of CKD were present in the other individuals is missing, thus CKD’s influence was likely underestimated [95]. On a systems level, inflammation in CKD associates with the development of aortic valve stenosis. As such, CRP levels strongly correlate with valve calcification, as shown in a study involving 137 patients treated with continuous ambulatory peritoneal dialysis [140]. In a study involving 55 patients receiving hemodialysis treatment, aortic stenosis occurred in 14 individuals and significantly correlated with heightened CRP levels [120]. Likewise, IL-6 levels associate with the risk for valvular calcification, as demonstrated in a cross-sectional study involving 135 patients with CKD and 58 control individuals [72]. Another recent, interesting observation at the hub of inflammation and calcification may become especially relevant for valvular pathologies. CKD associates with significantly reduced expression levels of G-protein-coupled calcium-sensing receptors on isolated monocytes. In-vitro, the decrease in calcium-sensing receptor expression impaired monocytes’ ability to inhibit vascular calcification [82]. In summary, evidence emerges that inflammation impacts valve remodeling in CKD, yet a detailed understanding of myeloid cells’ contributions to this disorder is still lacking.

Chronic kidney disease impairs myeloid cells’ responses to infection

The organism’s susceptibility for bacterial infections rises dramatically whenever kidney function fails–especially when renal insufficiency mandates replacement therapy. Infectious disease claims the second most casualties in CKD [101, 126]. In light of the unbridled, disease-promoting inflammation within the cardiovascular system, the dampened immune responses to bacterial intruders appear paradoxical at first sight. Today it is clear that innate immunity’s lowered anti-bacterial defense capabilities are significantly relayed by dysfunctional myeloid cells in CKD. The body of evidence for myeloid-mediated immunosuppression in CKD is substantial and involves polymorphonuclear leukocytes, i.e., neutrophilic granulocytes, monocytes and monocyte-derived dendritic cells.

Next to stationary or tissue-inhabiting cells, neutrophils rapidly root out and combat bacterial invaders. Equipped with various tools in their quiver, neutrophils initiate a powerful emergency response to prokaryotic infiltrators: Degranulation, extracellular traps (NETs), and phagocytosis may be employed to this end; all of which may be corrupted in CKD (Fig. 4) [52]. In-vitro, uremic plasma accelerates neutrophil apoptosis, diminishes superoxide production, and impairs phagocytosis of bacteria [12]. Impaired phagocytosis correlates inversely with the severity of uremia, and hemodialysis temporarily ameliorates phagocytic activity [79]. Following phagocytosis of bacteria, oxygen-dependent mechanisms create potent microbicidal reactive oxygen species. For instance, membrane-bound NADPH-oxidase releases superoxide anions into the phagosome, which subsequently dismutate into hydrogen peroxide aiding to neutralize engulfed microorganisms. Uremic toxins significantly interfere with the enzyme’s activity [65]. When isolated blood leukocytes were incubated with uremic retentions solutes, 39 out of the 48 examined molecules markedly diminished NADPH-oxidase activity in-vitro [121]. Likewise, uremic p-cresol suppresses NADPH-oxidase and myeloperoxidase activity at concentrations found in CKD [131]. Others showed that uremic guanidino compounds decreased superoxide formation via inhibition of glycolysis and consecutive energy depletion in neutrophils [50]. Thus, interference with reactive oxygen species generation represents a central element in CKD-mediated immunosuppression. Migration along a molecular gradient i.e. chemotaxis directs proper recruitment to the injured site. Leptin, known for its involvement in metabolism and obesity, increases in patients with CKD but significantly impairs neutrophil chemotaxis in-vitro, likely by reducing the cells’ sensitivity to chemoattractants [100]. In a small study involving 59 patients, GM-CSF treatment diminished apoptosis of neutrophils obtained from CKD patients. The authors speculate that GM-CSF in CKD may have therapeutic potential to augment immunity against infections [152].

Fig. 4
figure 4

Chronic kidney disease impairs anti-bacterial host defense. Uremic toxins (UT, small yellow circles) increase the host’s susceptibility for infection via compromising proper myeloid cell function [56]. Uremic toxins promote neutrophil apoptosis and impair the cells’ phagocytic and oxidative capacity [12, 52]. Likewise, monocytes’ phagocytic activity is mitigated. Reduced co-stimulatory CD80/86 signaling hinders intact T-cell activation [76]. Under uremic conditions, dendritic cells decrease in numbers and display reduced phagocytosis and antigen presentation [136, 138]

Beside neutrophilic granulocytes, monocytes display immunosuppressive features when kidney function fails. CKD impedes monocytes’ phagocytic capacity [88]. Monocytes from patients undergoing hemodialysis exhibit reduced FITC-Dextran particle uptake compared to controls [76]. When renal replacement therapy is required, human CD14+ monocytes reduce surface expression of co-stimulatory CD86 (B7-2), likely impacting lymphocyte interaction [37]. The attenuated immune response may be persistent. Lipopolysaccharide (LPS)-induced expression of lymphocyte co-stimulating CD40, CD80, and CD86 remains mitigated when CD14+ monocytes from CKD patients are consecutively cultivated under non-uremic condition and LPS effects on co-stimulatory molecule expression remain absent in uremic media [76]. Uremia may significantly impact leukocytes’ response to viral infections with consequences for bacterial encounters. Monocytes obtained from patients undergoing hemodialysis may be more susceptible for herpes simplex virus type-2 infection. The compromised renal function goes along with a curbed cytokine production such as TNF-α, Interferon-α, and IL-12 in response to LPS in-vitro. Proper viral inhibition was only observed in monocytes obtained from healthy controls [6].

Monocytes contribute to the supply of the heterogenous population of antigen-presenting dendritic cells. Dendritic cells decrease numerically in peripheral blood in patients with CKD and display reduced surface major histocompatibility complex expression [103, 137]. Both myeloid, i.e., monocyte-derived and plasmacytoid dendritic cell levels diminish, respectively, by 29 and 43%, as analyzed by flow cytometry in a study involving 245 patients with CKD stage III [103]. And when renal function is replaced by hemodialysis, dendritic cell levels are even 50% lower compared to healthy controls [136]. Ex-vivo, robust evidence suggests a prior uremic environment hampers monocyte to dendritic cell maturation and reduces characteristic dendritic cell surface markers and co-stimulatory molecules such as CD83, CD86, and CCR7 [35, 76, 138] (Fig. 5). Another small study on the contrary showed accelerated dendritic cell maturation of isolated monocytes from CKD patients [23]. Different experimental settings and varying types and amounts of uremic toxins may explain these diverging results. Likewise, CKD’s manifold effects on cytokine generation are incompletely understood. Incubation with indoxyl sulfate decreases pro-inflammatory cytokine secretion by dendritic cells [35]. Contingent on the experimental setting and uremic toxin under study, IL-12 release, for instance, may be augmented, unchanged, or even reduced [35, 76, 138]. IL-12 signaling, which promotes natural killer cell and T-cell activation, may in the aggregate be corrupted under uremic conditions in-vivo. This may conceivably relay the improper response to vaccination, which is a common phenomenon in CKD [69]. In this context, patients who did not properly responded to vaccination in a small study with 20 patients displayed a less mature dendritic cell phenotype with consequences for autologous T-cell proliferation. Interestingly, GM-CSF treatment reinstates immunity and renders primary non-responding CKD patients responsive to hepatitis B vaccination in distinct settings [59, 136].

Fig. 5
figure 5

Uremia impairs neutrophil and myeloid dendritic cell function. Reduced neutrophilic CD62L expression impairs rolling and diapedesis, as assessed in hemodialysis patients [12, 64]. Activation of the Fas/APO-1 pathway induces pro-apoptotic signaling via Bax/Bcl-2 system and p53 in neutrophils isolated from uremic patients [80]. The formation of extracellular traps increases but neutrophils’ phagocytic capacity decreases in CKD [64]. Uremic toxins inhibit myeloid dendritic cell maturation, reduce expression of characteristic surface markers, and impair endocytic activity [138]. Dendritic cell numbers decrease in CKD patients’ peripheral blood [136]. CKD’ s impact on dendritic cells’ capability to secrete Interleukin-12 remains incompletely understood, as the cytokine release is increased or impaired depending on the setting [35, 76, 138]. Uremic toxin-induced IL-12 secretion, however, alters activation of natural killer (NK) cells and Th-1 lymphocytes and subsequent IFN-γ and TNF-α release [76]

Finally, CKD impairs myeloid dendritic cells’ endocytotic activity [76]. In light of cholesterol crystals’ inflammatory potency, it is particularly noteworthy that uremia may mitigate sterile inflammation, as uric acid crystal-induced, inflammasome-mediated gout flares attenuate when CKD progresses [3, 4, 24]. Taken together, various myeloid cells are compromised in CKD and account for the dysfunctional immune response in non-sterile but also sterile inflammation. CKD’s engendered multi-facetted immune turbulences, however, remain incompletely understood. We will contrast inflammatory and immunosuppressive mechanisms below.

Synopsis

Whereas myeloid leukocytes' inflammatory effects promote cardiovascular disease progression, concurrent impaired innate immunity facilitates serious infections in CKD. This conundrum has not been solved, perhaps as most research focused unilaterally on one or the other entity.

Macrophages and monocytes: engines for inflammation in CKD?

Unsurprisingly, much evidence suggests CKD-driven vascular inflammation employs monocytes and resident macrophages on a cellular level. Likewise, first data point towards a promoting role of macrophages in heart valve disease [30, 106]. An unambiguous involvement of tissue-resident macrophages in impaired immune defense on the contrary is less clear. Understanding how macrophages residing in tissues other than the vasculature or valve respond to uremia may help understand these discrepancies. Conceivably, remote tissue dysfunction in uremia involves tissue-resident macrophages in light of the profound inflammatory response in vascular tissue. Proven inter-population heterogeneity, tissue-specific transcriptional profiles, and the dictating role of macrophages’ microenvironment to injury may yet significantly determine CKD’s effect on remote tissues [31, 53, 71].

Whereas little data imply macrophages mediate the heightened susceptibility to infection, monocytes’ responses to CKD are more diverse. Studies focusing on inflammation observed heightened levels of distinct, CD14+ monocyte populations and augmented expression of pattern-recognition receptors [45, 66, 90, 107, 110]. CD14 binds lipopolysaccharide (LPS) complexes, TLRs sense microbial ligands and TLR-4 is the prototypical LPS responder [98, 102, 148]. While monocytes’ enhanced inflammatory status is consistent with augmented endothelial adhesiveness and generally atherogenic features, these findings seem less compatible with immunosuppression in CKD. In contrast, decreased phagocytic activity and reduced expression of surface co-stimulatory molecules may contribute to impaired immunity. Various questions arise: do monocytes exhibit both features simultaneously or do distinct monocytic subsets exist? Are inflammatory or immunosuppressive characteristics a function of CKD’s stage? Do distinct ligands i.e. uremic toxins preferentially nudge monocytes towards either response and does uremic toxin composition change over time? Because monocytes circulate, a tissue-specific effect as observed for macrophages in other settings appears unlikely. As monocytes’ disease-promoting and inflammatory role in the cardiovascular system are significant, the lowered threshold for infections may conceivably be more relevantly relayed by other immune cells.

Neutrophils and dendritic cells: mediators of immunosuppression?

Neutrophil activation contributes to low-grade systemic inflammation in CKD and thus fosters vascular disease. Neutrophils’ impact on valvular inflammation and degeneration remains unclear. However, granulocyte subsets may accelerate cardiovascular calcification, which may also be relevant in valve disease. Studies indicate that neutrophils partake in systemic inflammation via augmented reactive oxygen production [17]. Enhanced superoxide release in uremic neutrophils can be elicited by the Protein-C kinase agonist PMA whereas use of zymosan–a molecule neutrophils avidly phagocytose– reduces superoxide release [122]. That uremic neutrophils display a reduced NADPH-oxidase activity following bacterial uptake is in line with this observation [65]. Therefore, the mechanism of activation may crucially regulate neutrophils response in the uremic microenvironment. The way neutrophils react to external stimuli may further be determined by priming. In this regard, inappropriate priming may cause an elevated baseline activity but mitigated emergency response required to repel prokaryotes [17, 122]. Further, uremic toxins may differentially influence neutrophil granulocytes, e.g., p-cresol does not affect leukocytes’ baseline oxidative burst activity as opposed to p-cresyl sulfate [119]. Overall, the current body of evidence indicates profound granulocyte dysfunction in CKD, but neutrophils’ diverse facets in this disorder remain inscrutable. Little is known about dendritic cells’ contribution to the state of immunosuppression in CKD. Uremic toxin mediated inhibition of cell maturation, decrease in numbers, reduced stimulation of the adapted immune system and presentation of antigens suggest that the aggregate response impairs immunity in CKD [35, 76, 137, 138].

Conclusion

Macrophages, monocytes, neutrophils, and myeloid dendritic cells are decisively impacted by impaired renal function. Whereas effects on monocytes and vascular macrophages are predominantly pro-inflammatory and pro-calcific, neutrophils and myeloid dendritic cells may relevantly contribute to the state of immunosuppression. A sole dichotomous view based on cell type does not seem suitable in light of the disease’s complexity on many levels and missing knowledge such as CKD’s role in myeloid dendritic cell behavior in cardiovascular tissues. However, myeloid leukocytes’ array of different responses may in aggregate explain the concomitant existence of augmented baseline inflammation and impaired host defense. Whether the same cell type acts inflammatory while displaying reduced anti-bacterial defense capabilities is unclear. Inadequate priming of polymorphonuclear granulocytes in CKD may be one instance, in which a single cell type contributes to heightened inflammation while also displaying compromised anti-bacterial immunity. Subset heterogeneity i.e. cells of the same population exert diverging functions may be another explanation for the Janus-faced myeloid cell response in CKD. That CKD’s complications are mediated via different intracellular signaling pathways is conceivable, however, has not been systematically investigated to date.

Future perspectives

The field of systems immunology is evolving and may help decipher CKD’s complex impact on the innate immune system. To better understand this convoluted situation, future studies should not exclusively focus on a single cell type, but instead assess differences in myeloid leukocyte responses, examine subset alterations and systemic interdependencies. Further, a more thorough and comparative analysis of the uremic microenvironment may help decipher uremic toxins’ pleiotropic effects. Profiling of uremic retention solutes have led to a comprehensive catalog of molecules, yet inter-molecule differences remain largely obscure [130]. Recently developed sequencing technologies will allow the community to obtain unprecedented insights into leukocyte subsets in CKD, and on a systems level will allow us to identify populations that either further inflammation or impair immunity. Targeting select tissues or cell types remains challenging but feasible. For instance, RNAi-mediated disruption of hepatic transthyretin production appears promising in hereditary amyloidosis [1]. Likewise, employing siRNA targeting PCSK9 proved useful against hypercholesterolemia [34]. While similar approaches to interfere with myeloid cells are technically more difficult, distinct nanoparticles are suitable vehicles to modulate gene expression in e.g. monocytes [81]. Silencing genes in myeloid cells that promote calcifying processes thus seems feasible to mitigate CKD’s systemic complications. However, a more refined understanding is a prerequisite to developing therapies that may intervene contingent on CKD’s stage and type of complication–taking leukocyte subtype and organ compartment into account.

References

  1. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin KP, Vita G, Attarian S, Planté-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweetser MT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379(1):11–21. https://doi.org/10.1056/NEJMoa1716153

    CAS  Article  PubMed  Google Scholar 

  2. Al-Chaqmaqchi HA, Moshfegh A, Dadfar E, Paulsson J, Hassan M, Jacobson SH, Lundahl J (2013) Activation of Wnt/β-catenin pathway in monocytes derived from chronic kidney disease patients. PLoS ONE 8(7):e68937. https://doi.org/10.1371/journal.pone.0068937

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Anders HJ (2010) Toll-like receptors and danger signaling in kidney injury. J Am Soc Nephrol 21(8):1270–1274. https://doi.org/10.1681/ASN.2010030233

    CAS  Article  PubMed  Google Scholar 

  4. Anders HJ, Andersen K, Stecher B (2013) The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 83(6):1010–1016. https://doi.org/10.1038/ki.2012.440

    CAS  Article  PubMed  Google Scholar 

  5. Anstine LJ, Horne TE, Horwitz EM, Lincoln J (2017) Contribution of extra-cardiac cells in murine heart valves is age-dependent. J Am Heart Assoc 6(10):e007097. https://doi.org/10.1161/JAHA.117.007097

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arena A, Coppolino G, Nostro L, Pavone B, Bonvissuto G, Campo S, Iannello D, Bonina L, Buemi M (2007) Impaired antiviral activity of monocytes from patients on hemodiafiltration. J Nephrol 20(5):560–567

    CAS  PubMed  Google Scholar 

  7. Baars T, Kleinbongard P, Böse D, Konorza T, Möhlenkamp S, Hippler J, Erbel R, Heusch G (2012) Saphenous vein aorto-coronary graft atherosclerosis in patients with chronic kidney disease: more plaque calcification and necrosis, but less vasoconstrictor potential. Basic Res Cardiol 107(6):303. https://doi.org/10.1007/s00395-012-0303-3

    Article  PubMed  Google Scholar 

  8. Bernelot Moens SJ, Verweij SL, van der Valk FM, van Capelleveen JC, Kroon J, Versloot M, Verberne HJ, Marquering HA, Duivenvoorden R, Vogt L, Stroes ES (2017) Arterial and cellular inflammation in patients with CKD. J Am Soc Nephrol 28(4):1278–1285. https://doi.org/10.1681/ASN.2016030317

    Article  PubMed  Google Scholar 

  9. Borges Bonan N, Schepers E, Pecoits-Filho R, Dhondt A, Pletinck A, De Somer F, Vanholder R, Van Biesen W, Moreno-Amaral A, Glorieux G (2019) Contribution of the uremic milieu to an increased pro-inflammatory monocytic phenotype in chronic kidney disease. Sci Rep 9(1):10236. https://doi.org/10.1038/s41598-019-46724-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Braun J, Oldendorf M, Moshage W, Heidler R, Zeitler E, Luft FC (1996) Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis 27(3):394–401. https://doi.org/10.1016/s0272-6386(96)90363-7

    CAS  Article  PubMed  Google Scholar 

  11. Cai Q, Mukku VK, Ahmad M (2013) Coronary artery disease in patients with chronic kidney disease: a clinical update. Curr Cardiol Rev 9(4):331–339. https://doi.org/10.2174/1573403x10666140214122234

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cendoroglo M, Jaber BL, Balakrishnan VS, Perianayagam M, King AJ, Pereira BJ (1999) Neutrophil apoptosis and dysfunction in uremia. J Am Soc Nephrol 10(1):93–100. https://doi.org/10.1681/ASN.V10193

    CAS  Article  PubMed  Google Scholar 

  13. Chen J, Budoff MJ, Reilly MP, Yang W, Rosas SE, Rahman M, Zhang X, Roy JA, Lustigova E, Nessel L, Ford V, Raj D, Porter AC, Soliman EZ, Wright JT, Wolf M, He J, CRIC, I. (2017) Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol 2(6):635–643. https://doi.org/10.1001/jamacardio.2017.0363

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chronic KDPC, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375(9731):2073–2081. https://doi.org/10.1016/S0140-6736(10)60674-5

    Article  Google Scholar 

  15. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16(2):228–231. https://doi.org/10.1038/nm.2087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Cochain C, Zernecke A (2015) Macrophages and immune cells in atherosclerosis: recent advances and novel concepts. Basic Res Cardiol 110(4):34. https://doi.org/10.1007/s00395-015-0491-8

    CAS  Article  PubMed  Google Scholar 

  17. Cohen G, Hörl WH (2012) Immune dysfunction in uremia—an update. Toxins (Basel) 4(11):962–990. https://doi.org/10.3390/toxins4110962

    CAS  Article  Google Scholar 

  18. Collins AJ, Li S, Gilbertson DT, Liu J, Chen SC, Herzog CA (2003) Chronic kidney disease and cardiovascular disease in the medicare population. Kidney Int 64:S24–S31. https://doi.org/10.1046/j.1523-1755.64.s87.5.x

    Article  Google Scholar 

  19. Correa S, Pena-Esparragoza JK, Scovner KM, Waikar SS, Mc Causland FR (2020) Myeloperoxidase and the risk of CKD progression, cardiovascular disease, and death in the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis 76(1):32–41. https://doi.org/10.1053/j.ajkd.2019.09.006

    CAS  Article  PubMed  Google Scholar 

  20. Coté N, Mahmut A, Bosse Y, Couture C, Pagé S, Trahan S, Boulanger MC, Fournier D, Pibarot P, Mathieu P (2013) Inflammation is associated with the remodeling of calcific aortic valve disease. Inflammation 36(3):573–581. https://doi.org/10.1007/s10753-012-9579-6

    CAS  Article  PubMed  Google Scholar 

  21. Cybulsky MI, Hegele RA (2003) The fractalkine receptor CX3CR1 is a key mediator of atherogenesis. J Clin Invest 111(8):1118–1120. https://doi.org/10.1172/JCI18237

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Di Angelantonio E, Danesh J, Eiriksdottir G, Gudnason V (2007) Renal function and risk of coronary heart disease in general populations: new prospective study and systematic review. PLoS Med 4(9):e270. https://doi.org/10.1371/journal.pmed.0040270

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dopheide JF, Zeller GC, Kuhlmann M, Girndt M, Sester M, Sester U (2015) Differentiation of monocyte derived dendritic cells in end stage renal disease is skewed towards accelerated maturation. Adv Clin Exp Med 24(2):257–266. https://doi.org/10.17219/acem/40463

    Article  PubMed  Google Scholar 

  24. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361. https://doi.org/10.1038/nature08938

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35. https://doi.org/10.1016/j.immuni.2014.06.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Ewert L, Fischer A, Brandt S, Scurt FG, Philipsen L, Müller AJ, Girndt M, Zenclussen AC, Lindquist JA, Gorny X, Mertens PR (2018) Cold shock Y-box binding protein-1 acetylation status in monocytes is associated with systemic inflammation and vascular damage. Atherosclerosis 278:156–165. https://doi.org/10.1016/j.atherosclerosis.2018.09.020

    CAS  Article  PubMed  Google Scholar 

  27. Florens N, Calzada C, Lyasko E, Juillard L, Soulage CO (2016) Modified lipids and lipoproteins in chronic kidney disease: a new class of uremic toxins. Toxins (Basel) 8(12):E376. https://doi.org/10.3390/toxins8120376

    CAS  Article  Google Scholar 

  28. Gajjala PR, Fliser D, Speer T, Jankowski V, Jankowski J (2015) Emerging role of post-translational modifications in chronic kidney disease and cardiovascular disease. Nephrol Dial Transplant 30(11):1814–1824. https://doi.org/10.1093/ndt/gfv048

    CAS  Article  PubMed  Google Scholar 

  29. Galeone A, Brunetti G, Oranger A, Greco G, Di Benedetto A, Mori G, Colucci S, Zallone A, Paparella D, Grano M (2013) Aortic valvular interstitial cells apoptosis and calcification are mediated by TNF-related apoptosis-inducing ligand. Int J Cardiol 169(4):296–304. https://doi.org/10.1016/j.ijcard.2013.09.012

    Article  PubMed  Google Scholar 

  30. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274. https://doi.org/10.1038/nature03940

    CAS  Article  PubMed  Google Scholar 

  31. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ, Immunological G.C. (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128. https://doi.org/10.1038/ni.2419

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. GBD C. K. D. C. (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 395(10225):709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  33. Geng J, Yang C, Wang B, Zhang X, Hu T, Gu Y, Li J (2018) Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 97:941–947. https://doi.org/10.1016/j.biopha.2017.11.016

    CAS  Article  PubMed  Google Scholar 

  34. German CA, Shapiro MD (2020) Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs 34(1):1–9. https://doi.org/10.1007/s40259-019-00399-6

    CAS  Article  PubMed  Google Scholar 

  35. Ghimire S, Matos C, Caioni M, Weber D, Peter K, Holler E, Kreutz M, Renner K (2018) Indoxyl 3-sulfate inhibits maturation and activation of human monocyte-derived dendritic cells. Immunobiology 223(2):239–245. https://doi.org/10.1016/j.imbio.2017.10.014

    CAS  Article  PubMed  Google Scholar 

  36. Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439–449. https://doi.org/10.1016/j.immuni.2016.02.024

    CAS  Article  PubMed  Google Scholar 

  37. Girndt M, Sester M, Sester U, Kaul H, Köhler H (2001) Defective expression of B7–2 (CD86) on monocytes of dialysis patients correlates to the uremia-associated immune defect. Kidney Int 59(4):1382–1389. https://doi.org/10.1046/j.1523-1755.2001.0590041382.x

    CAS  Article  PubMed  Google Scholar 

  38. Girndt M, Trojanowicz B, Ulrich C (2020) Monocytes in uremia. Toxins (Basel) 12(5):E340. https://doi.org/10.3390/toxins12050340

    CAS  Article  Google Scholar 

  39. Gisterå A, Hansson GK (2017) The immunology of atherosclerosis. Nat Rev Nephrol 13(6):368–380. https://doi.org/10.1038/nrneph.2017.51

    CAS  Article  PubMed  Google Scholar 

  40. Glorieux G, Helling R, Henle T, Brunet P, Deppisch R, Lameire N, Vanholder R (2004) In vitro evidence for immune activating effect of specific AGE structures retained in uremia. Kidney Int 66(5):1873–1880. https://doi.org/10.1111/j.1523-1755.2004.00961.x

    CAS  Article  PubMed  Google Scholar 

  41. Glorieux GL, Dhondt AW, Jacobs P, Van Langeraert J, Lameire NH, De Deyn PP, Vanholder RC (2004) In vitro study of the potential role of guanidines in leukocyte functions related to atherogenesis and infection. Kidney Int 65(6):2184–2192. https://doi.org/10.1111/j.1523-1755.2004.00631.x

    CAS  Article  PubMed  Google Scholar 

  42. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351(13):1296–1305. https://doi.org/10.1056/NEJMoa041031

    CAS  Article  PubMed  Google Scholar 

  43. Gonçalves S, Pecoits-Filho R, Perreto S, Barberato SH, Stinghen AE, Lima EG, Fuerbringer R, Sauthier SM, Riella MC (2006) Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant 21(10):2788–2794. https://doi.org/10.1093/ndt/gfl273

    Article  PubMed  Google Scholar 

  44. Gorisse L, Pietrement C, Vuiblet V, Schmelzer CE, Köhler M, Duca L, Debelle L, Fornès P, Jaisson S, Gillery P (2016) Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci U S A 113(5):1191–1196. https://doi.org/10.1073/pnas.1517096113

    CAS  Article  PubMed  Google Scholar 

  45. Grabulosa CC, Manfredi SR, Canziani ME, Quinto BMR, Barbosa RB, Rebello JF, Batista MC, Cendoroglo M, Dalboni MA (2018) Chronic kidney disease induces inflammation by increasing toll-like receptor-4, cytokine and cathelicidin expression in neutrophils and monocytes. Exp Cell Res 365(2):157–162. https://doi.org/10.1016/j.yexcr.2018.02.022

    CAS  Article  PubMed  Google Scholar 

  46. Guerraty MA, Chai B, Hsu JY, Ojo AO, Gao Y, Yang W, Keane MG, Budoff MJ, Mohler ER, CRIC, S. I. (2015) Relation of aortic valve calcium to chronic kidney disease (from the chronic renal insufficiency cohort study). Am J Cardiol 115(9):1281–1286. https://doi.org/10.1016/j.amjcard.2015.02.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Haghighat A, Weiss D, Whalin MK, Cowan DP, Taylor WR (2007) Granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor exacerbate atherosclerosis in apolipoprotein E-deficient mice. Circulation 115(15):2049–2054. https://doi.org/10.1161/CIRCULATIONAHA.106.665570

    CAS  Article  PubMed  Google Scholar 

  48. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383(9932):1933–1943. https://doi.org/10.1016/S0140-6736(14)60107-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, Hobbs FD (2016) Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE 11(7):e0158765. https://doi.org/10.1371/journal.pone.0158765

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Hirayama A, Noronha-Dutra AA, Gordge MP, Neild GH, Hothersall JS (2000) Inhibition of neutrophil superoxide production by uremic concentrations of guanidino compounds. J Am Soc Nephrol 11(4):684–689. https://doi.org/10.1681/ASN.V114684

    CAS  Article  PubMed  Google Scholar 

  51. Hof A, Raschke S, Baier K, Nehrenheim L, Selig JI, Schomaker M, Lichtenberg A, Meyer H, Akhyari P (2016) Challenges in developing a reseeded, tissue-engineered aortic valve prosthesis. Eur J Cardiothorac Surg 50(3):446–455. https://doi.org/10.1093/ejcts/ezw057

    Article  PubMed  Google Scholar 

  52. Hoyer FF, Nahrendorf M (2017) Neutrophil contributions to ischaemic heart disease. Eur Heart J 38(7):465–472. https://doi.org/10.1093/eurheartj/ehx017

    CAS  Article  PubMed  Google Scholar 

  53. Hoyer FF, Naxerova K, Schloss MJ, Hulsmans M, Nair AV, Dutta P, Calcagno DM, Herisson F, Anzai A, Sun Y, Wojtkiewicz G, Rohde D, Frodermann V, Vandoorne K, Courties G, Iwamoto Y, Garris CS, Williams DL, Breton S, Brown D, Whalen M, Libby P, Pittet MJ, King KR, Weissleder R, Swirski FK, Nahrendorf M (2019) Tissue-specific macrophage responses to remote injury impact the outcome of subsequent local immune challenge. Immunity 51(5):899-914.e7. https://doi.org/10.1016/j.immuni.2019.10.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Hueso M, Torras J, Carrera M, Vidal A, Navarro E, Grinyó J (2015) Chronic kidney disease is associated with an increase of intimal dendritic cells in a comparative autopsy study. J Inflamm (Lond) 12:26. https://doi.org/10.1186/s12950-015-0073-4

    Article  PubMed Central  Google Scholar 

  55. Hulin A, Anstine LJ, Kim AJ, Potter SJ, DeFalco T, Lincoln J, Yutzey KE (2018) Macrophage transitions in heart valve development and myxomatous valve disease. Arterioscler Thromb Vasc Biol 38(3):636–644. https://doi.org/10.1161/ATVBAHA.117.310667

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Ishigami J, Grams ME, Chang AR, Carrero JJ, Coresh J, Matsushita K (2017) CKD and risk for hospitalization with infection: the atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis 69(6):752–761. https://doi.org/10.1053/j.ajkd.2016.09.018

    Article  PubMed  Google Scholar 

  57. Ito S, Osaka M, Higuchi Y, Nishijima F, Ishii H, Yoshida M (2010) Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J Biol Chem 285(50):38869–38875. https://doi.org/10.1074/jbc.M110.166686

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. James MT, Laupland KB, Tonelli M, Manns BJ, Culleton BF, Hemmelgarn BR, Alberta KDN (2008) Risk of bloodstream infection in patients with chronic kidney disease not treated with dialysis. Arch Intern Med 168(21):2333–2339. https://doi.org/10.1001/archinte.168.21.2333

    Article  PubMed  Google Scholar 

  59. Jha R, Lakhtakia S, Jaleel MA, Narayan G, Hemlatha K (2001) Granulocyte macrophage colony stimulating factor (GM-CSF) induced sero-protection in end stage renal failure patients to hepatitis B in vaccine non-responders. Ren Fail 23(5):629–636. https://doi.org/10.1081/jdi-100107359

    CAS  Article  PubMed  Google Scholar 

  60. Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL (2019) Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol 10:2035. https://doi.org/10.3389/fimmu.2019.02035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH (2004) Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med 164(6):659–663. https://doi.org/10.1001/archinte.164.6.659

    Article  PubMed  Google Scholar 

  62. Kidney DIGOKDIGOBPWG (2021) KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int 99(3S):S1–S87. https://doi.org/10.1016/j.kint.2020.11.003

    Article  Google Scholar 

  63. Kidney DIGOKDIGOGDWG (2021) KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int 100(4S):S1–S276. https://doi.org/10.1016/j.kint.2021.05.021

    Article  Google Scholar 

  64. Kim JK, Hong CW, Park MJ, Song YR, Kim HJ, Kim SG (2017) Increased neutrophil extracellular trap formation in uremia is associated with chronic inflammation and prevalent coronary artery disease. J Immunol Res 2017:8415179. https://doi.org/10.1155/2017/8415179

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Kobayashi SD, Malachowa N, DeLeo FR (2018) Neutrophils and bacterial immune evasion. J Innate Immun 10(5–6):432–441. https://doi.org/10.1159/000487756

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Koc M, Toprak A, Arikan H, Odabasi Z, Elbir Y, Tulunay A, Asicioglu E, Eksioglu-Demiralp E, Glorieux G, Vanholder R, Akoglu E (2011) Toll-like receptor expression in monocytes in patients with chronic kidney disease and haemodialysis: relation with inflammation. Nephrol Dial Transplant 26(3):955–963. https://doi.org/10.1093/ndt/gfq500

    CAS  Article  PubMed  Google Scholar 

  67. Komaba H, Fukagawa M (2012) The role of FGF23 in CKD–with or without klotho. Nat Rev Nephrol 8:484–490. https://doi.org/10.1038/nrneph.2012.116

    CAS  Article  PubMed  Google Scholar 

  68. Kraus LM, Kraus AP (2001) Carbamoylation of amino acids and proteins in uremia. Kidney Int Suppl 78:S102–S107. https://doi.org/10.1046/j.1523-1755.2001.59780102.x

    CAS  Article  PubMed  Google Scholar 

  69. Krüger S, Müller-Steinhardt M, Kirchner H, Kreft B (2001) A 5-year follow-up on antibody response after diphtheria and tetanus vaccination in hemodialysis patients. Am J Kidney Dis 38(6):1264–1270. https://doi.org/10.1053/ajkd.2001.29223

    Article  PubMed  Google Scholar 

  70. Kuznik A, Mardekian J, Tarasenko L (2013) Evaluation of cardiovascular disease burden and therapeutic goal attainment in US adults with chronic kidney disease: an analysis of national health and nutritional examination survey data, 2001–2010. BMC Nephrol 14:132. https://doi.org/10.1186/1471-2369-14-132

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159(6):1312–1326. https://doi.org/10.1016/j.cell.2014.11.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Leskinen Y, Paana T, Saha H, Groundstroem K, Lehtimäki T, Kilpinen S, Huhtala H, Airaksinen J (2009) Valvular calcification and its relationship to atherosclerosis in chronic kidney disease. J Heart Valve Dis 18(4):429–438

    PubMed  Google Scholar 

  73. Li G, Qiao W, Zhang W, Li F, Shi J, Dong N (2017) The shift of macrophages toward M1 phenotype promotes aortic valvular calcification. J Thorac Cardiovasc Surg 153(6):1318-1327.e1. https://doi.org/10.1016/j.jtcvs.2017.01.052

    CAS  Article  PubMed  Google Scholar 

  74. Lichtenberg A, Cebotari S, Tudorache I, Sturz G, Winterhalter M, Hilfiker A, Haverich A (2006) Flow-dependent re-endothelialization of tissue-engineered heart valves. J Heart Valve Dis 15(2):287–293

    PubMed  Google Scholar 

  75. Liew H, Roberts MA, Pope A, McMahon LP (2021) Endothelial glycocalyx damage in kidney disease correlates with uraemic toxins and endothelial dysfunction. BMC Nephrol 22(1):21. https://doi.org/10.1186/s12882-020-02219-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Lim WH, Kireta S, Leedham E, Russ GR, Coates PT (2007) Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients. Kidney Int 72(9):1138–1148. https://doi.org/10.1038/sj.ki.5002425

    CAS  Article  PubMed  Google Scholar 

  77. Liu AC, Joag VR, Gotlieb AI (2007) The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol 171(5):1407–1418. https://doi.org/10.2353/ajpath.2007.070251

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Lu TM, Chung MY, Lin CC, Hsu CP, Lin SJ (2011) Asymmetric dimethylarginine and clinical outcomes in chronic kidney disease. Clin J Am Soc Nephrol 6(7):1566–1572. https://doi.org/10.2215/CJN.08490910

    CAS  Article  PubMed  Google Scholar 

  79. Mahajan S, Kalra OP, Asit KT, Ahuja G, Kalra V (2005) Phagocytic polymorphonuclear function in patients with progressive uremia and the effect of acute hemodialysis. Ren Fail 27(4):357–360

    CAS  Article  Google Scholar 

  80. Majewska E, Baj Z, Sulowska Z, Rysz J, Luciak M (2003) Effects of uraemia and haemodialysis on neutrophil apoptosis and expression of apoptosis-related proteins. Nephrol Dial Transplant 18(12):2582–2588. https://doi.org/10.1093/ndt/gfg441

    CAS  Article  PubMed  Google Scholar 

  81. Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, Gorbatov R, Iwamoto Y, Dutta P, Wojtkiewicz G, Courties G, Sebas M, Borodovsky A, Fitzgerald K, Nolte MW, Dickneite G, Chen JW, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M (2013) Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127(20):2038–2046. https://doi.org/10.1161/CIRCULATIONAHA.112.000116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Mary A, Objois T, Brazier M, Bennis Y, Boudot C, Lenglet G, Paccou J, Bugnicourt JM, Choukroun G, Drueke TB, Massy ZA, Kamel S, Six I, Mentaverri R (2021) Decreased monocyte calcium sensing receptor expression in patients with chronic kidney disease is associated with impaired monocyte ability to reduce vascular calcification. Kidney Int 99(6):1382–1391. https://doi.org/10.1016/j.kint.2021.01.026

    CAS  Article  PubMed  Google Scholar 

  83. Mas-Peiro S, Faerber G, Bon D, Herrmann E, Bauer T, Bleiziffer S, Bekeredjian R, Böning A, Frerker C, Beckmann A, Möllmann H, Vasa-Nicotera M, Ensminger S, Hamm CW, Beyersdorf F, Fichtlscherer S, Walther T, GARY-Executive, B. (2021) Impact of chronic kidney disease in 29 893 patients undergoing transcatheter or surgical aortic valve replacement from the German aortic valve registry. Eur J Cardiothorac Surg 59(3):532–544. https://doi.org/10.1093/ejcts/ezaa446

    Article  PubMed  Google Scholar 

  84. Masuda Y, Ohta H, Morita Y, Nakayama Y, Miyake A, Itoh N, Konishi M (2015) Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice. Biol Pharm Bull 38(5):687–693. https://doi.org/10.1248/bpb.b14-00276

    CAS  Article  PubMed  Google Scholar 

  85. Meerwaldt R, Zeebregts CJ, Navis G, Hillebrands JL, Lefrandt JD, Smit AJ (2009) Accumulation of advanced glycation end products and chronic complications in ESRD treated by dialysis. Am J Kidney Dis 53(1):138–150. https://doi.org/10.1053/j.ajkd.2008.08.031

    Article  PubMed  Google Scholar 

  86. Mildner A, Marinkovic G, Jung S (2016) Murine monocytes: origins, subsets, fates, and functions. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MCHD-0033-2016

    Article  PubMed  Google Scholar 

  87. Misfeld M, Sievers HH (2007) Heart valve macro- and microstructure. Philos Trans R Soc Lond B Biol Sci 362(1484):1421–1436. https://doi.org/10.1098/rstb.2007.2125

    Article  PubMed  PubMed Central  Google Scholar 

  88. Muniz-Junqueira MI, Braga Lopes C, Magalhães CA, Schleicher CC, Veiga JP (2005) Acute and chronic influence of hemodialysis according to the membrane used on phagocytic function of neutrophils and monocytes and pro-inflammatory cytokines production in chronic renal failure patients. Life Sci 77(25):3141–3155. https://doi.org/10.1016/j.lfs.2005.03.034

    CAS  Article  PubMed  Google Scholar 

  89. Nahrendorf M (2018) Myeloid cell contributions to cardiovascular health and disease. Nat Med 24(6):711–720. https://doi.org/10.1038/s41591-018-0064-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Naicker SD, Cormican S, Griffin TP, Maretto S, Martin WP, Ferguson JP, Cotter D, Connaughton EP, Dennedy MC, Griffin MD (2018) Chronic kidney disease severity is associated with selective expansion of a distinctive intermediate monocyte subpopulation. Front Immunol 9:2845. https://doi.org/10.3389/fimmu.2018.02845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Nakamura S, Ishibashi-Ueda H, Niizuma S, Yoshihara F, Horio T, Kawano Y (2009) Coronary calcification in patients with chronic kidney disease and coronary artery disease. Clin J Am Soc Nephrol 4(12):1892–1900. https://doi.org/10.2215/CJN.04320709

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Nakano T, Katsuki S, Chen M, Decano JL, Halu A, Lee LH, Pestana DVS, Kum AST, Kuromoto RK, Golden WS, Boff MS, Guimaraes GC, Higashi H, Kauffman KJ, Maejima T, Suzuki T, Iwata H, Barabási AL, Aster JC, Anderson DG, Sharma A, Singh SA, Aikawa E, Aikawa M (2019) Uremic toxin indoxyl sulfate promotes proinflammatory macrophage activation via the interplay of OATP2B1 and Dll4-notch signaling. Circulation 139(1):78–96. https://doi.org/10.1161/CIRCULATIONAHA.118.034588

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Narayanan M (2019) The many faces of infection in CKD: evolving paradigms, insights, and novel therapies. Adv Chronic Kidney Dis 26(1):5–7. https://doi.org/10.1053/j.ackd.2018.10.001

    Article  PubMed  Google Scholar 

  94. Nitta K, Akiba T, Kawashima A, Kimata N, Miwa N, Uchida K, Honda K, Takei T, Otsubo S, Yumura W, Kabaya T, Nihei H (2001) Serum levels of macrophage colony-stimulating factor and aortic calcification in hemodialysis patients. Am J Nephrol 21(6):465–470. https://doi.org/10.1159/000046650

    CAS  Article  PubMed  Google Scholar 

  95. Oba E, Aung NY, Ohe R, Sadahiro M, Yamakawa M (2020) The distribution of macrophage subtypes and their relationship to bone morphogenetic protein 2 in calcified aortic valve stenosis. Am J Transl Res 12(5):1728–1740

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Okumoto S, Taniguchi Y, Nakashima A, Masaki T, Ito T, Ogawa T, Takasugi N, Kohno N, Yorioka N (2009) C-C chemokine receptor 2 expression by circulating monocytes influences atherosclerosis in patients on chronic hemodialysis. Ther Apher Dial 13(3):205–212. https://doi.org/10.1111/j.1744-9987.2009.00658.x

    CAS  Article  PubMed  Google Scholar 

  97. Okyay GU, Inal S, Oneç K, Er RE, Paşaoğlu O, Paşaoğlu H, Derici U, Erten Y (2013) Neutrophil to lymphocyte ratio in evaluation of inflammation in patients with chronic kidney disease. Ren Fail 35(1):29–36. https://doi.org/10.3109/0886022X.2012.734429

    CAS  Article  PubMed  Google Scholar 

  98. Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79. https://doi.org/10.3389/fimmu.2012.00079

    Article  PubMed  PubMed Central  Google Scholar 

  99. Opdebeeck B, Maudsley S, Azmi A, De Maré A, De Leger W, Meijers B, Verhulst A, Evenepoel P, D’Haese PC, Neven E (2019) Indoxyl sulfate and p-cresyl sulfate promote vascular calcification and associate with glucose intolerance. J Am Soc Nephrol 30(5):751–766. https://doi.org/10.1681/ASN.2018060609

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Ottonello L, Gnerre P, Bertolotto M, Mancini M, Dapino P, Russo R, Garibotto G, Barreca T, Dallegri F (2004) Leptin as a uremic toxin interferes with neutrophil chemotaxis. J Am Soc Nephrol 15(9):2366–2372. https://doi.org/10.1097/01.ASN.0000139321.98029.40

    CAS  Article  PubMed  Google Scholar 

  101. Papayianni A, Alexopoulos E, Giamalis P, Gionanlis L, Belechri AM, Koukoudis P, Memmos D (2002) Circulating levels of ICAM-1, VCAM-1, and MCP-1 are increased in haemodialysis patients: association with inflammation, dyslipidaemia, and vascular events. Nephrol Dial Transplant 17(3):435–441. https://doi.org/10.1093/ndt/17.3.435

    CAS  Article  PubMed  Google Scholar 

  102. Park BS, Lee JO (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45:e66. https://doi.org/10.1038/emm.2013.97

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Paul K, Kretzschmar D, Yilmaz A, Bärthlein B, Titze S, Wolf G, Busch M (2013) Circulating dendritic cell precursors in chronic kidney disease: a cross-sectional study. BMC Nephrol 14:274. https://doi.org/10.1186/1471-2369-14-274

    Article  PubMed  PubMed Central  Google Scholar 

  104. Perkovic V, Verdon C, Ninomiya T, Barzi F, Cass A, Patel A, Jardine M, Gallagher M, Turnbull F, Chalmers J, Craig J, Huxley R (2008) The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med 5(10):e207. https://doi.org/10.1371/journal.pmed.0050207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Podrez EA, Schmitt D, Hoff HF, Hazen SL (1999) Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest 103(11):1547–1560. https://doi.org/10.1172/JCI5549

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Raddatz MA, Huffstater T, Bersi MR, Reinfeld BI, Madden MZ, Booton SE, Rathmell WK, Rathmell JC, Lindman BR, Madhur MS, Merryman WD (2020) Macrophages promote aortic valve cell calcification and alter STAT3 splicing. Arterioscler Thromb Vasc Biol 40(6):e153–e165. https://doi.org/10.1161/ATVBAHA.120.314360

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Ramírez R, Carracedo J, Merino A, Soriano S, Ojeda R, Alvarez-Lara MA, Martín-Malo A, Aljama P (2011) CD14+CD16+ monocytes from chronic kidney disease patients exhibit increased adhesion ability to endothelial cells. Contrib Nephrol 171:57–61. https://doi.org/10.1159/000327134

    Article  PubMed  Google Scholar 

  108. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink, M. G. (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454(3):345–359. https://doi.org/10.1007/s00424-007-0212-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Rodríguez-Carrio J, Carrillo-López N, Ulloa C, Seijo M, Rodríguez-García M, Rodríguez-Suárez C, Díaz-Corte C, Cannata-Andía JB, Suárez A, Dusso AS (2019) A subset of low density granulocytes is associated with vascular calcification in chronic kidney disease patients. Sci Rep 9(1):13230. https://doi.org/10.1038/s41598-019-49429-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, Große-Dunker G, Heisel I, Hornof F, Jeken J, Rebling NM, Ulrich C, Scheller B, Böhm M, Fliser D, Heine GH (2012) CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 60(16):1512–1520. https://doi.org/10.1016/j.jacc.2012.07.019

    CAS  Article  PubMed  Google Scholar 

  111. Ruiz-Ortega M, Lamas S, Ortiz A (2022) Antifibrotic agents for the management of CKD: a review. Am J Kidney Dis. https://doi.org/10.1053/j.ajkd.2021.11.010

    Article  PubMed  Google Scholar 

  112. Sampath P, Moideen K, Ranganathan UD, Bethunaickan R (2018) Monocyte subsets: phenotypes and function in tuberculosis infection. Front Immunol 9:1726. https://doi.org/10.3389/fimmu.2018.01726

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Sandek A, Rauchhaus M, Anker SD, von Haehling S (2008) The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care 11(5):632–639. https://doi.org/10.1097/MCO.0b013e32830a4c6e

    Article  PubMed  Google Scholar 

  114. Saran R, Robinson B, Abbott KC, Agodoa LYC, Bragg-Gresham J, Balkrishnan R, Bhave N, Dietrich X, Ding Z, Eggers PW, Gaipov A, Gillen D, Gipson D, Gu H, Guro P, Haggerty D, Han Y, He K, Herman W, Heung M, Hirth RA, Hsiung JT, Hutton D, Inoue A, Jacobsen SJ, Jin Y, Kalantar-Zadeh K, Kapke A, Kleine CE, Kovesdy CP, Krueter W, Kurtz V, Li Y, Liu S, Marroquin MV, McCullough K, Molnar MZ, Modi Z, Montez-Rath M, Moradi H, Morgenstern H, Mukhopadhyay P, Nallamothu B, Nguyen DV, Norris KC, O’Hare AM, Obi Y, Park C, Pearson J, Pisoni R, Potukuchi PK, Repeck K, Rhee CM, Schaubel DE, Schrager J, Selewski DT, Shamraj R, Shaw SF, Shi JM, Shieu M, Sim JJ, Soohoo M, Steffick D, Streja E, Sumida K, Kurella Tamura M, Tilea A, Turf M, Wang D, Weng W, Woodside KJ, Wyncott A, Xiang J, Xin X, Yin M, You AS, Zhang X, Zhou H, Shahinian V (2019) US renal data system 2018 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 73(3 Suppl 1):A7–A8. https://doi.org/10.1053/j.ajkd.2019.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, Gill JS, Hlatky MA, Jardine AG, Landmesser U, Newby LK, Herzog CA, Cheung M, Wheeler DC, Winkelmayer WC, Marwick TH, Conference P. (2019) Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J Am Coll Cardiol 74(14):1823–1838. https://doi.org/10.1016/j.jacc.2019.08.1017

    CAS  Article  PubMed  Google Scholar 

  116. Sarnak MJ, Jaber BL (2000) Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int 58(4):1758–1764. https://doi.org/10.1111/j.1523-1755.2000.00337.x

    CAS  Article  PubMed  Google Scholar 

  117. Schepers E, Glorieux G, Dou L, Cerini C, Gayrard N, Louvet L, Maugard C, Preus P, Rodriguez-Ortiz M, Argiles A, Brunet P, Cohen G, Jankowski J, Jankowski V, Massy Z, Rodriguez M, Vanholder R, European U.T.W.G.E.U.T (2010) Guanidino compounds as cause of cardiovascular damage in chronic kidney disease: an in vitro evaluation. Blood Purif 30(4):277–287. https://doi.org/10.1159/000320765

    CAS  Article  PubMed  Google Scholar 

  118. Schepers E, Houthuys E, Dhondt A, De Meyer G, Neirynck N, Bernaert P, Van den Bergh R, Brouckaert P, Vanholder R, Glorieux G (2015) Transcriptome analysis in patients with chronic kidney disease on hemodialysis disclosing a key role for CD16+CX3CR1+ monocytes. PLoS ONE 10(4):e0121750. https://doi.org/10.1371/journal.pone.0121750

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Schepers E, Meert N, Glorieux G, Goeman J, Van der Eycken J, Vanholder R (2007) P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol Dial Transpl 22(2):592–596. https://doi.org/10.1093/ndt/gfl584

    CAS  Article  Google Scholar 

  120. Schönenberger A, Winkelspecht B, Köhler H, Girndt M (2004) High prevalence of aortic valve alterations in haemodialysis patients is associated with signs of chronic inflammation. Nephron Clin Pract 96(2):c48-55. https://doi.org/10.1159/000076399

    Article  PubMed  Google Scholar 

  121. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J, European U.T.W.G.E.U.T (2014) Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest 44(8):802–811. https://doi.org/10.1111/eci.12297

    CAS  Article  PubMed  Google Scholar 

  122. Sela S, Shurtz-Swirski R, Cohen-Mazor M, Mazor R, Chezar J, Shapiro G, Hassan K, Shkolnik G, Geron R, Kristal B (2005) Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J Am Soc Nephrol 16(8):2431–2438. https://doi.org/10.1681/ASN.2004110929

    CAS  Article  PubMed  Google Scholar 

  123. Singh S, Torzewski M (2019) Fibroblasts and their pathological functions in the fibrosis of aortic valve sclerosis and atherosclerosis. Biomolecules 9:E472. https://doi.org/10.3390/biom9090472

    CAS  Article  PubMed  Google Scholar 

  124. Spadaccio C, Mozetic P, Nappi F, Nenna A, Sutherland F, Trombetta M, Chello M, Rainer A (2016) Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res Cardiol 111(2):16. https://doi.org/10.1007/s00395-016-0534-9

    CAS  Article  PubMed  Google Scholar 

  125. Stadlbauer V, Horvath A, Ribitsch W, Schmerböck B, Schilcher G, Lemesch S, Stiegler P, Rosenkranz AR, Fickert P, Leber B (2017) Structural and functional differences in gut microbiome composition in patients undergoing haemodialysis or peritoneal dialysis. Sci Rep 7(1):15601. https://doi.org/10.1038/s41598-017-15650-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Szeto CC, McIntyre CW, Li PK (2018) Circulating bacterial fragments as cardiovascular risk factors in CKD. J Am Soc Nephrol 29(6):1601–1608. https://doi.org/10.1681/ASN.2018010068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Tahir S, Steffens S (2021) Nonclassical monocytes in cardiovascular physiology and disease. Am J Physiol Cell Physiol 320(5):C761–C770. https://doi.org/10.1152/ajpcell.00326.2020

    CAS  Article  PubMed  Google Scholar 

  128. Ternacle J, Côté N, Krapf L, Nguyen A, Clavel MA, Pibarot P (2019) Chronic kidney disease and the pathophysiology of valvular heart disease. Can J Cardiol 35(9):1195–1207. https://doi.org/10.1016/j.cjca.2019.05.028

    Article  PubMed  Google Scholar 

  129. Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, James MT, Hemmelgarn BR, Alberta KDN (2012) Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380(9844):807–814. https://doi.org/10.1016/S0140-6736(12)60572-8

    Article  PubMed  Google Scholar 

  130. Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T (2010) Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res 33(9):944–952. https://doi.org/10.1038/hr.2010.113

    Article  PubMed  Google Scholar 

  131. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, European UTWG (2008) A bench to bedside view of uremic toxins. J Am Soc Nephrol 19(5):863–870. https://doi.org/10.1681/ASN.2007121377

    Article  PubMed  Google Scholar 

  132. Varma PP (2015) Prevalence of chronic kidney disease in India - Where are we heading. Indian J Nephrol 25(3):133–135

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Vavilis G, Bäck M, Occhino G, Trevisan M, Bellocco R, Evans M, Lindholm B, Szummer K, Carrero JJ (2019) Kidney dysfunction and the risk of developing aortic stenosis. J Am Coll Cardiol 73(3):305–314. https://doi.org/10.1016/j.jacc.2018.10.068

    Article  PubMed  Google Scholar 

  134. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315. https://doi.org/10.1038/ki.2012.345

    Article  PubMed  Google Scholar 

  135. Verbrugge FH, Tang WH, Hazen SL (2015) Protein carbamylation and cardiovascular disease. Kidney Int 88(3):474–478. https://doi.org/10.1038/ki.2015.166

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. Verkade MA, van de Wetering J, Klepper M, Vaessen LM, Weimar W, Betjes MG (2004) Peripheral blood dendritic cells and GM-CSF as an adjuvant for hepatitis B vaccination in hemodialysis patients. Kidney Int 66(2):614–621. https://doi.org/10.1111/j.1523-1755.2004.00781.x

    CAS  Article  PubMed  Google Scholar 

  137. Verkade MA, van Druningen CJ, Op de Hoek CT, Weimar W, Betjes MG (2007) Decreased antigen-specific T-cell proliferation by moDC among hepatitis B vaccine non-responders on haemodialysis. Clin Exp Med 7(2):65–71. https://doi.org/10.1007/s10238-007-0127-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Verkade MA, van Druningen CJ, Vaessen LM, Hesselink DA, Weimar W, Betjes MG (2007) Functional impairment of monocyte-derived dendritic cells in patients with severe chronic kidney disease. Nephrol Dial Transplant 22(1):128–138. https://doi.org/10.1093/ndt/gfl519

    CAS  Article  PubMed  Google Scholar 

  139. Wachter DL, Neureiter D, Câmpean V, Hilgers KF, Büttner-Herold M, Daniel C, Benz K, Amann K (2018) In-situ analysis of mast cells and dendritic cells in coronary atherosclerosis in chronic kidney disease (CKD). Histol Histopathol 33(8):871–886. https://doi.org/10.14670/HH-11-988

    CAS  Article  PubMed  Google Scholar 

  140. Wang AYM, Woo J, Wang M, Sea MMM, Ip R, Li PKT, Lui SF, Sanderson JE (2001) Association of inflammation and malnutrition with cardiac valve calcification in continuous ambulatory peritoneal dialysis patients. J Am Soc Nephrol 12(9):1927–1936. https://doi.org/10.1681/ASN.V1291927

    Article  PubMed  Google Scholar 

  141. Wang F, Zhang P, Jiang H, Cheng S (2012) Gut bacterial translocation contributes to microinflammation in experimental uremia. Dig Dis Sci 57(11):2856–2862. https://doi.org/10.1007/s10620-012-2242-0

    CAS  Article  PubMed  Google Scholar 

  142. Wang HE, Gamboa C, Warnock DG, Muntner P (2011) Chronic kidney disease and risk of death from infection. Am J Nephrol 34(4):330–336. https://doi.org/10.1159/000330673

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wanner C, Krane V, März W, Olschewski M, Mann JF, Ruf G, Ritz E, German DADSI (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353(3):238–248. https://doi.org/10.1056/NEJMoa043545

    CAS  Article  PubMed  Google Scholar 

  144. Weber A, Barth M, Selig JI, Raschke S, Dakaras K, Hof A, Hesse J, Schrader J, Lichtenberg A, Akhyari P (2018) Enzymes of the purinergic signaling system exhibit diverse effects on the degeneration of valvular interstitial cells in a 3-D microenvironment. FASEB J 32(8):4356–4369. https://doi.org/10.1096/fj.201701326R

    CAS  Article  PubMed  Google Scholar 

  145. Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389(10075):1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5

    Article  PubMed  Google Scholar 

  146. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39(3):230–237. https://doi.org/10.1159/000360010

    CAS  Article  PubMed  Google Scholar 

  147. Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC (2011) Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118(5):e16-31. https://doi.org/10.1182/blood-2010-12-326355

    CAS  Article  PubMed  Google Scholar 

  148. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249(4975):1431–1433. https://doi.org/10.1126/science.1698311

    CAS  Article  PubMed  Google Scholar 

  149. Wu Z, Zhang Z, Lei Z, Lei P (2019) CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev 48:24–31. https://doi.org/10.1016/j.cytogfr.2019.06.003

    CAS  Article  PubMed  Google Scholar 

  150. Xu KY, Xia GH, Lu JQ, Chen MX, Zhen X, Wang S, You C, Nie J, Zhou HW, Yin J (2017) Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep 7(1):1445. https://doi.org/10.1038/s41598-017-01387-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Yeap WH, Wong KL, Shimasaki N, Teo EC, Quek JK, Yong HX, Diong CP, Bertoletti A, Linn YC, Wong SC (2016) CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep 6:34310. https://doi.org/10.1038/srep34310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Zahran N, Sayed A, William I, Mahmoud O, Sabry O, Rafaat M (2013) Neutrophil apoptosis: impact of granulocyte macrophage colony stimulating factor on cell survival and viability in chronic kidney disease and hemodialysis patients. Arch Med Sci 9(6):984–989. https://doi.org/10.5114/aoms.2013.39789

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. Zeng L, Mathew AV, Byun J, Atkins KB, Brosius FC, Pennathur S (2018) Myeloperoxidase-derived oxidants damage artery wall proteins in an animal model of chronic kidney disease-accelerated atherosclerosis. J Biol Chem 293(19):7238–7249. https://doi.org/10.1074/jbc.RA117.000559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74-80. https://doi.org/10.1182/blood-2010-02-258558

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.H. was supported by the Cologne Fortune Scholarship Program. F.F.H. was supported by the Else Kröner-Fresenius-Stiftung (2021_EKEA.83). H.W. was supported by the Neven-DuMont Foundation. F.F.H., H.W., M.M., T.B. and S.B. received funding from the Deutsche Forschungsgemeinschaft: HO 5279-2-1 to F.F.H., SFB TRR259 (397484323) to S.B. and H.W., GRK2407 (360043781) to H.W.; SFB TRR259 (397484323), GRK2407 (360043781) and MO 3438/2-1 to M.M; and BE2212 and CRU329 to T.B. Images were created with BioRender.

Funding

Open Access funding enabled and organized by Projekt DEAL. Deutsche Forschungsgemeinschaft, HO 5279-2-1, Friedrich Felix Hoyer, BE2212, Thomas Benzing, CRU329, Thomas Benzing, SFB TRR259 (397484323), Holger Winkels, GRK2407 (360043781), Holger Winkels, SFB TRR259 (397484323), Martin Mollenhauer, GRK2407 (360043781), Martin Mollenhauer, MO 3438/2-1, Martin Mollenhauer, SFB TRR259 (397484323), Stephan Baldus, Universität zu Köln. Else Kröner-Fresenius-Stiftung, 2021_EKEA.83, Friedrich Felix Hoyer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Felix Hoyer.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests related to this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 119 KB)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hof, A., Geißen, S., Singgih, K. et al. Myeloid leukocytes’ diverse effects on cardiovascular and systemic inflammation in chronic kidney disease. Basic Res Cardiol 117, 38 (2022). https://doi.org/10.1007/s00395-022-00945-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-022-00945-4

Keyword

  • Myeloid cells
  • Cardiovascular inflammation
  • Chronic kidney disease
  • Infection
  • Systems immunology