Skip to main content

Advertisement

Log in

Reduced calcium responsiveness characterizes contractile dysfunction following coronary microembolization

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Aims

We addressed calcium responsiveness in microembolized myocardium at 6 h after coronary microembolization (ME).

Methods and results

In anesthetized pigs calcium responsiveness was determined as the increase of a myocardial work index (WI; LV pressure development vs. wall thickening) in response to a graded intracoronary infusion of CaCl2 at baseline and at 6 h after ME or placebo, respectively. At baseline, CaCl2 infusion increased WI in both groups (ME: 296 ± 22 to 468 ± 47 mmHg*mm; placebo: 324 ± 24 to 485 ± 38 mmHg*mm; mean ± SEM). At 6 h after ME, WI was decreased by 159 ± 16 mmHg*mm (P < 0.05 vs. baseline) and remained reduced at any calcium concentration, whereas it was unchanged with placebo. The calcium concentration in coronary blood necessary to achieve the half maximal increase in WI remained unchanged from baseline to 6 h and did not differ between placebo and ME.

Conclusion

The ME-induced myocardial dysfunction is not related to an altered calcium sensitivity, but is characterized by a reduced maximal contractile force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amadou A, Nawrocki A, Best-Belpomme M, Pavoine C, Pecker F (2002) Arachidonic acid mediates dual effect of TNF-alpha on Ca2+ transients and contraction of adult rat cardiomyocytes. Am J Physiol Cell Physiol 282:C1339–C1347

    PubMed  CAS  Google Scholar 

  2. Cailleret M, Amadou A, Andrieu-Abadie N, Nawrocki A, Adamy C, Ait-Mamar B, Rocaries F, Best-Belpomme M, Levade T, Pavoine C, Pecker F (2004) N-Acetylcysteine prevents the deleterious effect of tumor necrosis factor-a on calcium transients and contraction in adult rat cardiomyocytes. Circulation 109:406–411

    Article  PubMed  CAS  Google Scholar 

  3. Canton M, Skyschally A, Menabo R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di Lisa F, Heusch G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J 27:875–881

    Article  PubMed  CAS  Google Scholar 

  4. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-κB activation and TNF-α gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021

    PubMed  CAS  Google Scholar 

  5. Davies MJ, Thomas AC, Knapman PA, Hangartner JR (1986) Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation 73:418–427

    PubMed  CAS  Google Scholar 

  6. Dörge H, Neumann T, Behrends M, Skyschally A, Schulz R, Kasper C, Erbel R, Heusch G (2000) Perfusion-contraction mismatch with coronary microvascular obstruction: role of inflammation. Am J Physiol Heart Circ Physiol 279:H2587–H2592

    PubMed  Google Scholar 

  7. Dörge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNF-α in contractile dysfunction. J Mol Cell Cardiol 34:51–62

    Article  PubMed  Google Scholar 

  8. Erbel R, Heusch G (2000) Brief review: coronary microembolization. J Am Coll Cardiol 36:22–24

    Article  PubMed  CAS  Google Scholar 

  9. Falk E (1985) Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 71:699–708

    PubMed  CAS  Google Scholar 

  10. Goldhaber JI, Kim KH, Natterson PD, Lawrence T, Yang P, Weiss JN (1996) Effects of TNF-α on [Ca2+] i and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 40:H1449–H1455

    Google Scholar 

  11. Heusch G, Rose J, Skyschally A, Post H, Schulz R (1996) Calcium responsiveness in regional myocardial short-term hibernation and stunning in the in situ porcine heart—inotropic responses to postextrasystolic potentiation and intracoronary calcium. Circulation 93:1556–1566

    PubMed  CAS  Google Scholar 

  12. Heusch G, Schulz R, Haude M, Erbel R (2004) Coronary microembolization. J Mol Cell Cardiol 37:23–31

    Article  PubMed  CAS  Google Scholar 

  13. Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999

    Article  PubMed  CAS  Google Scholar 

  14. Kumar A, Paladugu B, Mensing J, Kumar A, Parrillo JE (2007) Nitric oxide-dependent and -independent mechanisms are involved in TNF-{alpha}-induced depression of cardiac myocyte contractility. Am J Physiol Regul Integr Comp Physiol 292:R1900–R1906

    PubMed  CAS  Google Scholar 

  15. Lecour S, Rochette L, Opie L (2005) Free radicals trigger TNF-α-induced cardioprotection. Cardiovasc Res 65:239–243

    Article  PubMed  CAS  Google Scholar 

  16. Luo J, Xuan Y-T, Gu Y, Prabhu SD (2006) Prolonged oxidative stress inverts the cardiac force-frequency relation: role of altered calcium handling and myofilament calcium responsiveness. J Mol Cell Cardiol 40:64–75

    Article  PubMed  CAS  Google Scholar 

  17. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392

    Article  PubMed  CAS  Google Scholar 

  18. McDonough PM, Yasui K, Betto R, Salviati G, Glembotski CC, Palade PT, Sabbadini RA (1994) Control of cardiac Ca2+ levels: inhibitory actions of sphingosine on Ca2+ channel conductance. Circ Res 75:981–989

    PubMed  CAS  Google Scholar 

  19. Oral H, Dorn GW, Mann DL (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-α in the adult mammalian cardiac myocyte. J Biol Chem 272:4836–4842

    Article  PubMed  CAS  Google Scholar 

  20. Rajan S, Ahmed RP, Jagatheesan G, Petrashevskaya N, Boivin GP, Urboniene D, Arteaga GM, Wolska BM, Solaro RJ, Liggett SB, Wieczorek DF (2007) Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ Res 101:205–214

    Article  PubMed  CAS  Google Scholar 

  21. Skyschally A, Gres P, Heusch P, Martin C, Haude M, Erbel R, Schulz R, Heusch G (2005) Preinfarction angina: no interference of coronary microembolization with acute ischemic preconditioning. J Mol Cell Cardiol 39:355–361

    Article  PubMed  CAS  Google Scholar 

  22. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-α in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146

    Article  PubMed  CAS  Google Scholar 

  23. Skyschally A, Haude M, Dörge H, Thielmann M, Duschin A, van de Sand A, Konietzka I, Büchert A, Aker S, Massoudy P, Schulz R, Erbel R, Heusch G (2004) Glucocorticoid treatment prevents progressive myocardial dysfunction resulting from experimental coronary microembolization. Circulation 109:2337–2342

    Article  PubMed  CAS  Google Scholar 

  24. Skyschally A, Leineweber K, Gres P, Haude M, Erbel R, Heusch G (2006) Coronary microembolization. Basic Res Cardiol 101:373–382

    Article  PubMed  Google Scholar 

  25. Skyschally A, Schulz R, Erbel R, Heusch G (2002) Reduced coronary and inotropic reserves with coronary microembolization. Am J Physiol Heart Circ Physiol 282:H611–H614

    PubMed  CAS  Google Scholar 

  26. Skyschally A, Schulz R, Gres P, Konietzka I, Martin C, Haude M, Erbel R, Heusch G (2004) Coronary microembolization does not induce acute preconditioning against infarction in pigs—the role of adenosine. Cardiovasc Res 63:313–322

    Article  PubMed  CAS  Google Scholar 

  27. Stojanovic MO, Ziolo MT, Wahler GM, Wolska BM (2001) Anti-adrenergic effects of nitric oxide donor SIN-1 in rat cardiac myocytes. Am J Physiol Cell Physiol 281:C342–C349

    PubMed  CAS  Google Scholar 

  28. Sugishita K, Kinugawa K, Shimizu T, Harada K, Matsui H, Takahashi T, Serizawa T, Kohmoto O (1999) Cellular basis for the acute inhibitory effects of IL-6 and TNF-α on excitation-contraction coupling. J Mol Cell Cardiol 31:1457–1467

    Article  PubMed  CAS  Google Scholar 

  29. Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van de Sand A, Konietzka I, Büchert A, Krüger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-α and sphingosine. Circ Res 90:807–813

    Article  PubMed  CAS  Google Scholar 

  30. van der Velden J (2006) Functional significance of myofilament protein oxidation. Eur Heart J 27:764–765

    Article  PubMed  Google Scholar 

  31. Vescovo G, Ravara B, Dalla LL (2008) Skeletal muscle myofibrillar protein oxidation and exercise capacity in heart failure. Basic Res Cardiol 103:285–290

    Article  PubMed  CAS  Google Scholar 

  32. Wang J, Wang H, Zhang Y, Gao H, Nattel S, Wang Z (2004) Impairment of HERG K+ channel function by tumor necrosis factor-alpha. Role of reactive oxygen species as a mediator. J Biol Chem 14:13289–13292

    Article  Google Scholar 

  33. Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschope C (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500–507

    Article  PubMed  CAS  Google Scholar 

  34. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662

    Article  PubMed  CAS  Google Scholar 

  35. Yokoyama T, Vaca L, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-α in the adult mammalian heart. J Clin Invest 92:2303–2312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Gerd Heusch was the recipient of a grant from the Deutsche Forschungsgemeinschaft (He 1320/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Heusch.

Additional information

Dr. William M. Chilian, Rootstown, USA, served as guest editor for the manuscript and was responsible for all editorial decisions, including the selection of reviewers. The policy applies to all manuscripts with authors from the editor’s institution.

Returned for 1. Revision: 1 May 2008. 1. Revision received: 3 May 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skyschally, A., Gres, P., van Caster, P. et al. Reduced calcium responsiveness characterizes contractile dysfunction following coronary microembolization. Basic Res Cardiol 103, 552–559 (2008). https://doi.org/10.1007/s00395-008-0732-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0732-1

Key words

Navigation