De Re V, Magris R, Cannizzaro R (2017) New insights into the pathogenesis of celiac disease. Front Med (Lausanne) 4:137. https://doi.org/10.3389/fmed.2017.00137
Article
Google Scholar
Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, Kelly CP, Ahuja V, Makharia GK (2018) Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 16(6):823–836. https://doi.org/10.1016/j.cgh.2017.06.037(e822)
PubMed
Article
Google Scholar
Lebwohl B, Sanders DS, Green PHR (2018) Coeliac disease. Lancet 391(10115):70–81. https://doi.org/10.1016/s0140-6736(17)31796-8
PubMed
Article
Google Scholar
Caminero A, Meisel M, Jabri B, Verdu EF (2019) Mechanisms by which gut microorganisms influence food sensitivities. Nat Rev Gastroenterol Hepatol 16(1):7–18. https://doi.org/10.1038/s41575-018-0064-z
CAS
PubMed
PubMed Central
Article
Google Scholar
Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, Hadjivassiliou M, Kaukinen K, Kelly CP, Leonard JN, Lundin KE, Murray JA, Sanders DS, Walker MM, Zingone F, Ciacci C (2013) The Oslo definitions for coeliac disease and related terms. Gut 62(1):43–52. https://doi.org/10.1136/gutjnl-2011-301346
Article
PubMed
Google Scholar
Dubois PC, van Heel DA (2008) Translational mini-review series on the immunogenetics of gut disease: immunogenetics of coeliac disease. Clin Exp Immunol 153(2):162–173. https://doi.org/10.1111/j.1365-2249.2008.03704.x
CAS
PubMed
PubMed Central
Article
Google Scholar
Marasco G, Di Biase AR, Schiumerini R, Eusebi LH, Iughetti L, Ravaioli F, Scaioli E, Colecchia A, Festi D (2016) Gut microbiota and celiac disease. Dig Dis Sci 61(6):1461–1472. https://doi.org/10.1007/s10620-015-4020-2
CAS
PubMed
Article
Google Scholar
Scher JU (2016) The microbiome in celiac disease: beyond diet-genetic interactions. Cleve Clin J Med 83(3):228–230. https://doi.org/10.3949/ccjm.83a.15123
PubMed
Article
Google Scholar
Lionetti E, Castellaneta S, Francavilla R, Pulvirenti A, Tonutti E, Amarri S, Barbato M, Barbera C, Barera G, Bellantoni A, Castellano E, Guariso G, Limongelli MG, Pellegrino S, Polloni C, Ughi C, Zuin G, Fasano A, Catassi C (2014) Introduction of gluten, HLA status, and the risk of Celiac disease in children. N Engl J Med 371(14):1295–1303. https://doi.org/10.1056/NEJMoa1400697
CAS
PubMed
Article
Google Scholar
Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ 361:k2179. https://doi.org/10.1136/bmj.k2179
PubMed
PubMed Central
Article
Google Scholar
Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589. https://doi.org/10.1038/nrgastro.2012.156
CAS
PubMed
Article
Google Scholar
Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836. https://doi.org/10.1042/bcj20160510
CAS
PubMed
Article
Google Scholar
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ, Sauk JS, Wilson RG, Stevens BW, Scott JM, Pierce K, Deik AA, Bullock K, Imhann F, Porter JA, Zhernakova A, Fu J, Weersma RK, Wijmenga C, Clish CB, Vlamakis H, Huttenhower C, Xavier RJ (2019) Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 4(2):293–305. https://doi.org/10.1038/s41564-018-0306-4
CAS
PubMed
Article
Google Scholar
Han H, Li Y, Fang J, Liu G, Yin J, Li T, Yin Y (2018) Gut microbiota and type 1 diabetes. Int J Mol Sci. https://doi.org/10.3390/ijms19040995
PubMed
PubMed Central
Article
Google Scholar
Olivares M, Walker AW, Capilla A, Benitez-Paez A, Palau F, Parkhill J, Castillejo G, Sanz Y (2018) Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome 6(1):36. https://doi.org/10.1186/s40168-018-0415-6
PubMed
PubMed Central
Article
Google Scholar
Chibbar R, Dieleman LA (2019) The gut microbiota in celiac disease and probiotics. Nutrients. https://doi.org/10.3390/nu11102375
PubMed
PubMed Central
Article
Google Scholar
Krishnareddy S (2019) The microbiome in celiac disease. Gastroenterol Clin North Am 48(1):115–126. https://doi.org/10.1016/j.gtc.2018.09.008
PubMed
Article
Google Scholar
Olivares M, Benitez-Paez A, de Palma G, Capilla A, Nova E, Castillejo G, Varea V, Marcos A, Garrote JA, Polanco I, Donat E, Ribes-Koninckx C, Calvo C, Ortigosa L, Palau F, Sanz Y (2018) Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes 9(6):551–558. https://doi.org/10.1080/19490976.2018.1451276
PubMed
PubMed Central
Article
Google Scholar
Sollid LM (2000) Molecular basis of celiac disease. Annu Rev Immunol 18:53–81. https://doi.org/10.1146/annurev.immunol.18.1.53
CAS
PubMed
Article
Google Scholar
Kagnoff MF (2007) Celiac disease: pathogenesis of a model immunogenetic disease. J Clin Invest 117(1):41–49. https://doi.org/10.1172/JCI30253
CAS
PubMed
PubMed Central
Article
Google Scholar
Jabri B, Sollid LM (2017) T cells in celiac disease. J Immunol 198(8):3005–3014. https://doi.org/10.4049/jimmunol.1601693
CAS
PubMed
Article
Google Scholar
Zimmermann C, Rudloff S, Lochnit G, Arampatzi S, Maison W, Zimmer KP (2014) Epithelial transport of immunogenic and toxic gliadin peptides in vitro. PLoS ONE 9(11):e113932. https://doi.org/10.1371/journal.pone.0113932
CAS
PubMed
PubMed Central
Article
Google Scholar
Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297(5590):2275–2279. https://doi.org/10.1126/science.1074129
CAS
PubMed
Article
Google Scholar
Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91(1):151–175. https://doi.org/10.1152/physrev.00003.2008
CAS
PubMed
Article
Google Scholar
Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D'Agate C, Not T, Zampini L, Catassi C, Fasano A (2006) Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41(4):408–419. https://doi.org/10.1080/00365520500235334
CAS
PubMed
Article
Google Scholar
Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS, Antalis TM, Vogel SN, Zhao A, Yang S, Arrietta M-C, Meddings JB, Fasano A (2009) Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA 106(39):16799–16804. https://doi.org/10.1073/pnas.0906773106
PubMed
Article
PubMed Central
Google Scholar
Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Noren O, Roepstorff P, Lundin KE, Sjostrom H, Sollid LM (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4(6):713–717. https://doi.org/10.1038/nm0698-713
CAS
PubMed
Article
Google Scholar
Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E (1989) Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med 169(1):345–350. https://doi.org/10.1084/jem.169.1.345
CAS
PubMed
Article
Google Scholar
Karell K, Louka AS, Moodie SJ, Ascher H, Clot F, Greco L, Ciclitira PJ, Sollid LM, Partanen J, European Genetics Cluster on Celiac D (2003) HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European genetics cluster on celiac disease. Hum Immunol 64(4):469–477
CAS
PubMed
Article
Google Scholar
Meresse B, Malamut G, Cerf-Bensussan N (2012) Celiac disease: an immunological jigsaw. Immunity 36(6):907–919. https://doi.org/10.1016/j.immuni.2012.06.006
CAS
PubMed
Article
Google Scholar
Yu XB, Uhde M, Green PH, Alaedini A (2018) Autoantibodies in the extraintestinal manifestations of celiac disease. Nutrients. https://doi.org/10.3390/nu10081123
PubMed
PubMed Central
Article
Google Scholar
Di Sabatino A, Corazza GR (2009) Coeliac disease. Lancet 373(9673):1480–1493. https://doi.org/10.1016/s0140-6736(09)60254-3
PubMed
Article
Google Scholar
van Leeuwen MA, Lindenbergh-Kortleve DJ, Raatgeep HC, de Ruiter LF, de Krijger RR, Groeneweg M, Escher JC, Samsom JN (2013) Increased production of interleukin-21, but not interleukin-17A, in the small intestine characterizes pediatric celiac disease. Mucosal Immunol 6(6):1202–1213. https://doi.org/10.1038/mi.2013.19
CAS
PubMed
Article
Google Scholar
Abadie V, Jabri B (2014) IL-15: a central regulator of celiac disease immunopathology. Immunol Rev 260(1):221–234. https://doi.org/10.1111/imr.12191
CAS
PubMed
PubMed Central
Article
Google Scholar
Uhrberg M, Valiante NM, Young NT, Lanier LL, Phillips JH, Parham P (2001) The repertoire of killer cell Ig-like receptor and CD94:NKG2A receptors in T cells: clones sharing identical alpha beta TCR rearrangement express highly diverse killer cell Ig-like receptor patterns. J Immunol 166(6):3923–3932. https://doi.org/10.4049/jimmunol.166.6.3923
CAS
PubMed
Article
Google Scholar
Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9(12):858–870. https://doi.org/10.1038/nri2670
CAS
PubMed
Article
Google Scholar
Thome JJ, Farber DL (2015) Emerging concepts in tissue-resident T cells: lessons from humans. Trends Immunol 36(7):428–435. https://doi.org/10.1016/j.it.2015.05.003
CAS
PubMed
PubMed Central
Article
Google Scholar
Sarra M, Cupi ML, Monteleone I, Franze E, Ronchetti G, Di Sabatino A, Gentileschi P, Franceschilli L, Sileri P, Sica G, Del Vecchio BG, Cretella M, Paoluzi OA, Corazza GR, Pallone F, Monteleone G (2013) IL-15 positively regulates IL-21 production in celiac disease mucosa. Mucosal Immunol 6(2):244–255. https://doi.org/10.1038/mi.2012.65
CAS
PubMed
Article
Google Scholar
Ciccocioppo R, Di Sabatino A, Corazza GR (2005) The immune recognition of gluten in coeliac disease. Clin Exp Immunol 140(3):408–416. https://doi.org/10.1111/j.1365-2249.2005.02783.x
CAS
PubMed
PubMed Central
Article
Google Scholar
Foundation Cd future therapies for celiac disease. https://celiac.org/about-celiac-disease/future-therapies-for-celiac-disease/
Withoff S, Li Y, Jonkers I, Wijmenga C (2016) Understanding celiac disease by genomics. Trends Genet 32(5):295–308. https://doi.org/10.1016/j.tig.2016.02.003
CAS
PubMed
Article
Google Scholar
Catassi C, Kryszak D, Bhatti B, Sturgeon C, Helzlsouer K, Clipp SL, Gelfond D, Puppa E, Sferruzza A, Fasano A (2010) Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med 42(7):530–538. https://doi.org/10.3109/07853890.2010.514285
PubMed
Article
Google Scholar
Vriezinga SL, Auricchio R, Bravi E, Castillejo G, Chmielewska A, Crespo Escobar P, Kolaček S, Koletzko S, Korponay-Szabo IR, Mummert E, Polanco I, Putter H, Ribes-Koninckx C, Shamir R, Szajewska H, Werkstetter K, Greco L, Gyimesi J, Hartman C, Hogen Esch C, Hopman E, Ivarsson A, Koltai T, Koning F, Martinez-Ojinaga E, te Marvelde C, Pavic A, Romanos J, Stoopman E, Villanacci V, Wijmenga C, Troncone R, Mearin ML (2014) Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med 371(14):1304–1315. https://doi.org/10.1056/NEJMoa1404172
CAS
PubMed
Article
Google Scholar
Farrell RJ, Kelly CP (2002) Celiac sprue. N Engl J Med 346(3):180–188. https://doi.org/10.1056/NEJMra010852
CAS
PubMed
Article
Google Scholar
Lammers KM, Herrera MG, Dodero VI (2018) Translational chemistry meets gluten-related disorders. Chemist Open 7(3):217–232. https://doi.org/10.1002/open.201700197
CAS
Article
Google Scholar
Ni J, Wu GD, Albenberg L, Tomov VT (2017) Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14(10):573–584. https://doi.org/10.1038/nrgastro.2017.88
PubMed
PubMed Central
Article
Google Scholar
Maruvada P, Leone V, Kaplan LM, Chang EB (2017) The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22(5):589–599. https://doi.org/10.1016/j.chom.2017.10.005
CAS
PubMed
Article
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. https://doi.org/10.1038/nature05414
PubMed
Article
Google Scholar
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787
CAS
PubMed
PubMed Central
Article
Google Scholar
Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. https://doi.org/10.1126/science.1104816
CAS
PubMed
Article
Google Scholar
Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133. https://doi.org/10.1146/annurev.mi.31.100177.000543
CAS
PubMed
Article
Google Scholar
Singh P, Kumar M, Al Khodor S (2019) Vitamin D deficiency in the gulf cooperation council: exploring the triad of genetic predisposition, the gut microbiome and the immune system. Front Immunol 10:1042. https://doi.org/10.3389/fimmu.2019.01042
CAS
PubMed
PubMed Central
Article
Google Scholar
Shapira M (2016) Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol 31(7):539–549. https://doi.org/10.1016/j.tree.2016.03.006
PubMed
Article
Google Scholar
Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050. https://doi.org/10.3402/mehd.v26.26050
PubMed
Article
Google Scholar
Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11(8):e1001631. https://doi.org/10.1371/journal.pbio.1001631
CAS
PubMed
PubMed Central
Article
Google Scholar
Fouhy F, Watkins C, Hill CJ, O’Shea CA, Nagle B, Dempsey EM, O'Toole PW, Ross RP, Ryan CA, Stanton C (2019) Perinatal factors affect the gut microbiota up to four years after birth. Nat Commun 10(1):1517. https://doi.org/10.1038/s41467-019-09252-4
CAS
PubMed
PubMed Central
Article
Google Scholar
Quigley EMM (2013) Gut bacteria in health and disease. Gastroenterolo Hepatol 9(9):560–569
Google Scholar
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28(8):1221–1238. https://doi.org/10.1210/me.2014-1108
CAS
PubMed
PubMed Central
Article
Google Scholar
Hutchison CA 3rd (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 35(18):6227–6237. https://doi.org/10.1093/nar/gkm688
CAS
PubMed
PubMed Central
Article
Google Scholar
Rawat A, Engelthaler DM, Driebe EM, Keim P, Foster JT (2014) MetaGeniE: characterizing human clinical samples using deep metagenomic sequencing. PLoS ONE 9(11):e110915. https://doi.org/10.1371/journal.pone.0110915
CAS
PubMed
PubMed Central
Article
Google Scholar
Scheuch M, Höper D, Beer M (2015) RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinform 16(1):69. https://doi.org/10.1186/s12859-015-0503-6
CAS
Article
Google Scholar
Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234
CAS
Article
Google Scholar
Rautava S, Luoto R, Salminen S, Isolauri E (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9(10):565–576. https://doi.org/10.1038/nrgastro.2012.144
CAS
PubMed
Article
Google Scholar
Cheng J, Kalliomaki M, Heilig HG, Palva A, Lahteenoja H, de Vos WM, Salojarvi J, Satokari R (2013) Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol 13:113. https://doi.org/10.1186/1471-230X-13-113
CAS
PubMed
PubMed Central
Article
Google Scholar
Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, Maki M, Matto J (2013) The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis 19(5):934–941. https://doi.org/10.1097/MIB.0b013e31828029a9
PubMed
Article
Google Scholar
O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693. https://doi.org/10.1038/sj.embor.7400731
CAS
PubMed
PubMed Central
Article
Google Scholar
Ensari A (2010) Gluten-sensitive enteropathy (celiac disease): controversies in diagnosis and classification. Arch Pathol Lab Med 134(6):826–836. https://doi.org/10.1043/1543-2165-134.6.826
PubMed
Article
Google Scholar
Rondonotti E, Spada C, Cave D, Pennazio M, Riccioni ME, De Vitis I, Schneider D, Sprujevnik T, Villa F, Langelier J, Arrigoni A, Costamagna G, de Franchis R (2007) Video capsule enteroscopy in the diagnosis of celiac disease: a multicenter study. Am J Gastroenterol 102(8):1624–1631. https://doi.org/10.1111/j.1572-0241.2007.01238.x
PubMed
Article
Google Scholar
Nurminen S, Kivelä L, Huhtala H, Kaukinen K, Kurppa K (2019) Extraintestinal manifestations were common in children with coeliac disease and were more prevalent in patients with more severe clinical and histological presentation. Acta Paediatr 108(4):681–687. https://doi.org/10.1111/apa.14324
PubMed
Article
Google Scholar
De Palma G, Nadal I, Collado MC, Sanz Y (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102(8):1154–1160. https://doi.org/10.1017/S0007114509371767
CAS
PubMed
Article
Google Scholar
De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 10:63. https://doi.org/10.1186/1471-2180-10-63
CAS
PubMed
PubMed Central
Article
Google Scholar
De Palma G, Capilla A, Nadal I, Nova E, Pozo T, Varea V, Polanco I, Castillejo G, Lopez A, Garrote JA, Calvo C, Garcia-Novo MD, Cilleruelo ML, Ribes-Koninckx C, Palau F, Sanz Y (2010) Interplay between human leukocyte antigen genes and the microbial colonization process of the newborn intestine. Curr Issues Mol Biol 12(1):1–10
PubMed
Google Scholar
Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri JM, Moreno LA, Martin-Matillas M, Campoy C, Marti A, Moleres A, Delgado M, Veiga OL, Garcia-Fuentes M, Redondo CG, Sanz Y (2009) Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond) 33(7):758–767. https://doi.org/10.1038/ijo.2008.260
CAS
Article
Google Scholar
Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, Gagliardi F, Laghi L, Crecchio C, Guerzoni ME, Gobbetti M, Francavilla R (2011) Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol 11:219. https://doi.org/10.1186/1471-2180-11-219
CAS
PubMed
PubMed Central
Article
Google Scholar
Collado MC, Calabuig M, Sanz Y (2007) Differences between the fecal microbiota of coeliac infants and healthy controls. Curr Issues Intest Microbiol 8(1):9–14
CAS
PubMed
Google Scholar
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2008) Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol 8:232. https://doi.org/10.1186/1471-2180-8-232
PubMed
PubMed Central
Article
Google Scholar
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2009) Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 62(3):264–269. https://doi.org/10.1136/jcp.2008.061366
CAS
PubMed
Article
Google Scholar
Nistal E, Caminero A, Herran AR, Arias L, Vivas S, de Morales JM, Calleja S, de Miera LE, Arroyo P, Casqueiro J (2012) Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm Bowel Dis 18(4):649–656. https://doi.org/10.1002/ibd.21830
PubMed
Article
Google Scholar
Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, Longhi C, Maiella G, Cucchiara S, Conte MP (2010) A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiol 10:175. https://doi.org/10.1186/1471-2180-10-175
CAS
PubMed
PubMed Central
Article
Google Scholar
Sanchez E, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal bacteroides species associated with coeliac disease. J Clin Pathol 63(12):1105–1111. https://doi.org/10.1136/jcp.2010.076950
CAS
PubMed
Article
Google Scholar
Sánchez E, Donat E, Ribes-Koninckx C, Fernández-Murga ML, Sanz Y (2013) Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol 79(18):5472–5479. https://doi.org/10.1128/AEM.00869-13
PubMed
PubMed Central
Article
Google Scholar
Bodkhe R, Shetty SA, Dhotre DP, Verma AK, Bhatia K, Mishra A, Kaur G, Pande P, Bangarusamy DK, Santosh BP, Perumal RC, Ahuja V, Shouche YS, Makharia GK (2019) Comparison of small gut and whole gut microbiota of first-degree relatives with adult celiac disease patients and controls. Front Microbiol 10:164. https://doi.org/10.3389/fmicb.2019.00164
PubMed
PubMed Central
Article
Google Scholar
Golfetto L, de Senna FD, Hermes J, Beserra BT, Franca Fda S, Martinello F (2014) Lower bifidobacteria counts in adult patients with celiac disease on a gluten-free diet. Arq Gastroenterol 51(2):139–143. https://doi.org/10.1590/s0004-28032014000200013
PubMed
Article
Google Scholar
Wacklin P, Laurikka P, Lindfors K, Collin P, Salmi T, Lahdeaho ML, Saavalainen P, Maki M, Matto J, Kurppa K, Kaukinen K (2014) Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am J Gastroenterol 109(12):1933–1941. https://doi.org/10.1038/ajg.2014.355
CAS
PubMed
Article
Google Scholar
Garcia-Mazcorro JF, Rivera-Gutierrez X, Cobos-Quevedo OJ, Grube-Pagola P, Meixueiro-Daza A, Hernandez-Flores K, Cabrera-Jorge FJ, Vivanco-Cid H, Dowd SE, Remes-Troche JM (2018) First insights into the gut microbiota of mexican patients with celiac disease and non-celiac gluten sensitivity. Nutrients. https://doi.org/10.3390/nu10111641
PubMed
PubMed Central
Article
Google Scholar
Verdu EF, Galipeau HJ, Jabri B (2015) Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol 12(9):497–506. https://doi.org/10.1038/nrgastro.2015.90
CAS
PubMed
PubMed Central
Article
Google Scholar
Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, Hammarström M-L (2004) Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol 99(5):894–904. https://doi.org/10.1111/j.1572-0241.2004.04157.x
PubMed
Article
Google Scholar
Ou G, Hedberg M, Hörstedt P, Baranov V, Forsberg G, Drobni M, Sandström O, Wai SN, Johansson I, Hammarström M-L, Hernell O, Hammarström S (2009) Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol 104(12):3058–3067. https://doi.org/10.1038/ajg.2009.524
PubMed
Article
Google Scholar
Sanchez E, Donat E, Ribes-Koninckx C, Fernandez-Murga ML, Sanz Y (2013) Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol 79(18):5472–5479. https://doi.org/10.1128/AEM.00869-13
PubMed
PubMed Central
Article
Google Scholar
Sanz Y, Sanchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F (2007) Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol 51(3):562–568. https://doi.org/10.1111/j.1574-695X.2007.00337.x
CAS
PubMed
Article
Google Scholar
Di Cagno R, Rizzello CG, Gagliardi F, Ricciuti P, Ndagijimana M, Francavilla R, Guerzoni ME, Crecchio C, Gobbetti M, De Angelis M (2009) Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl Environ Microbiol 75(12):3963–3971. https://doi.org/10.1128/aem.02793-08
PubMed
PubMed Central
Article
Google Scholar
De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-63
PubMed
PubMed Central
Article
Google Scholar
Olivares M, Walker AW, Capilla A, Benítez-Páez A, Palau F, Parkhill J, Castillejo G, Sanz Y (2018) Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome. https://doi.org/10.1186/s40168-018-0415-6
PubMed
PubMed Central
Article
Google Scholar
Shiba T, Aiba Y, Ishikawa H, Ushiyama A, Takagi A, Mine T, Koga Y (2003) The suppressive effect of bifidobacteria on Bacteroides vulgatus, a putative pathogenic microbe in inflammatory bowel disease. Microbiol Immunol 47(6):371–378. https://doi.org/10.1111/j.1348-0421.2003.tb03368.x
CAS
PubMed
Article
Google Scholar
Sydora BC, Macfarlane SM, Walker JW, Dmytrash AL, Churchill TA, Doyle J, Fedorak RN (2007) Epithelial barrier disruption allows nondisease-causing bacteria to initiate and sustain IBD in the IL-10 gene-deficient mouse. Inflamm Bowel Dis 13(8):947–954. https://doi.org/10.1002/ibd.20155
PubMed
Article
Google Scholar
Setoyama H, Imaoka A, Ishikawa H, Umesaki Y (2003) Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides strains isolated from ulcerative colitis patients. Microbes Infect 5(2):115–122. https://doi.org/10.1016/s1286-4579(02)00080-1
PubMed
Article
Google Scholar
Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Saenz de Miera LE, Rodriguez-Aparicio LB, Casqueiro J (2012) Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 94(8):1724–1729. https://doi.org/10.1016/j.biochi.2012.03.025
CAS
PubMed
Article
Google Scholar
Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP, Russell AK, Jury J, Herran AR, Casqueiro J, Tye-Din JA, Surette MG, Magarvey NA, Schuppan D, Verdu EF (2016) Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151(4):670–683. https://doi.org/10.1053/j.gastro.2016.06.041
CAS
PubMed
Article
Google Scholar
Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, Palau F, Nova E, Marcos A, Polanco I, Ribes-Koninckx C, Ortigosa L, Izquierdo L, Sanz Y (2015) The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 64(3):406–417. https://doi.org/10.1136/gutjnl-2014-306931
CAS
PubMed
Article
Google Scholar
Sellitto M, Bai G, Serena G, Fricke WF, Sturgeon C, Gajer P, White JR, Koenig SS, Sakamoto J, Boothe D, Gicquelais R, Kryszak D, Puppa E, Catassi C, Ravel J, Fasano A (2012) Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE 7(3):e33387. https://doi.org/10.1371/journal.pone.0033387
CAS
PubMed
PubMed Central
Article
Google Scholar
Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68(2):623–633. https://doi.org/10.1128/aem.68.2.623-633.2002
PubMed
PubMed Central
Article
Google Scholar
Zamakhchari M, Wei G, Dewhirst F, Lee J, Schuppan D, Oppenheim FG, Helmerhorst EJ (2011) Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS ONE 6(9):e24455. https://doi.org/10.1371/journal.pone.0024455
CAS
PubMed
PubMed Central
Article
Google Scholar
Chen VL, Kasper DL (2014) Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes 5(1):129–140. https://doi.org/10.4161/gmic.27289
PubMed
Article
Google Scholar
Moro K, Koyasu S (2015) Innate lymphoid cells, possible interaction with microbiota. Semin Immunopathol 37(1):27–37. https://doi.org/10.1007/s00281-014-0470-4
CAS
PubMed
Article
Google Scholar
Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H (2008) Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol 9:65. https://doi.org/10.1186/1471-2172-9-65
CAS
PubMed
PubMed Central
Article
Google Scholar
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455. https://doi.org/10.1038/nature12726
CAS
PubMed
PubMed Central
Article
Google Scholar
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. https://doi.org/10.1038/nature12721
CAS
PubMed
Article
Google Scholar
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. https://doi.org/10.1126/science.1241165
CAS
PubMed
Article
Google Scholar
Wylie KM, Weinstock GM, Storch GA (2012) Emerging view of the human virome. Transl Res 160(4):283–290. https://doi.org/10.1016/j.trsl.2012.03.006
CAS
PubMed
PubMed Central
Article
Google Scholar
Lerner A, Matthias T, Aminov R (2017) Potential effects of horizontal gene exchange in the human gut. Front Immunol 8:1630. https://doi.org/10.3389/fimmu.2017.01630
CAS
PubMed
PubMed Central
Article
Google Scholar
Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP (2013) Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4(1):4–16. https://doi.org/10.4161/gmic.22371
PubMed
PubMed Central
Article
Google Scholar
Navarro F, Muniesa M (2017) Phages in the Human Body. Front Microbiol 8:566. https://doi.org/10.3389/fmicb.2017.00566
PubMed
PubMed Central
Article
Google Scholar
Manrique P, Dills M, Young MJ (2017) The human gut phage community and its implications for health and disease. Viruses. https://doi.org/10.3390/v9060141
PubMed
PubMed Central
Article
Google Scholar
Chopin MC, Chopin A, Bidnenko E (2005) Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8(4):473–479. https://doi.org/10.1016/j.mib.2005.06.006
CAS
PubMed
Article
Google Scholar
Kagnoff MF, Paterson YJ, Kumar PJ, Kasarda DD, Carbone FR, Unsworth DJ, Austin RK (1987) Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut 28(8):995–1001. https://doi.org/10.1136/gut.28.8.995
CAS
PubMed
PubMed Central
Article
Google Scholar
Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, Taki I, Norris JM, Erlich HA, Eisenbarth GS, Rewers M (2006) Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol 101(10):2333–2340. https://doi.org/10.1111/j.1572-0241.2006.00741.x
CAS
PubMed
Article
Google Scholar
Myléus A, Hernell O, Gothefors L, Hammarström M-L, Persson L-Å, Stenlund H, Ivarsson A (2012) Early infections are associated with increased risk for celiac disease: an incident case-referent study. BMC Pediat 12(1):194. https://doi.org/10.1186/1471-2431-12-194
Article
Google Scholar
Kemppainen KM, Lynch KF, Liu E, Lonnrot M, Simell V, Briese T, Koletzko S, Hagopian W, Rewers M, She JX, Simell O, Toppari J, Ziegler AG, Akolkar B, Krischer JP, Lernmark A, Hyoty H, Triplett EW, Agardh D, Group TS (2017) Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin Gastroenterol Hepatol 15(5):694–702. https://doi.org/10.1016/j.cgh.2016.10.033(e695)
PubMed
Article
Google Scholar
Ziberna F, De Lorenzo G, Schiavon V, Arnoldi F, Quaglia S, De Leo L, Vatta S, Martelossi S, Burrone OR, Ventura A, Not T (2016) Lack of evidence of rotavirus-dependent molecular mimicry as a trigger of coeliac disease. Clin Exp Immunol 186(3):356–363. https://doi.org/10.1111/cei.12855
CAS
PubMed
PubMed Central
Article
Google Scholar
Plot L, Amital H (2009) Infectious associations of Celiac disease. Autoimmun Rev 8(4):316–319. https://doi.org/10.1016/j.autrev.2008.10.001
CAS
PubMed
Article
Google Scholar
Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, Meisel M, Kim SM, Discepolo V, Pruijssers AJ, Ernest JD, Iskarpatyoti JA, Costes LM, Lawrence I, Palanski BA, Varma M, Zurenski MA, Khomandiak S, McAllister N, Aravamudhan P, Boehme KW, Hu F, Samsom JN, Reinecker HC, Kupfer SS, Guandalini S, Semrad CE, Abadie V, Khosla C, Barreiro LB, Xavier RJ, Ng A, Dermody TS, Jabri B (2017) Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356(6333):44–50. https://doi.org/10.1126/science.aah5298
CAS
PubMed
PubMed Central
Article
Google Scholar
Kahrs CR, Chuda K, Tapia G, Stene LC, Mårild K, Rasmussen T, Rønningen KS, Lundin KEA, Kramna L, Cinek O, Størdal K (2019) Enterovirus as trigger of coeliac disease: nested case-control study within prospective birth cohort. BMJ 364:l231. https://doi.org/10.1136/bmj.l231
PubMed
PubMed Central
Article
Google Scholar
Lindfors K, Lin J, Lee H-S, Hyöty H, Nykter M, Kurppa K, Liu E, Koletzko S, Rewers M, Hagopian W, Toppari J, Ziegler A-G, Akolkar B, Krischer JP, Petrosino JF, Lloyd RE, Agardh D (2019) Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study. Gut. https://doi.org/10.1136/gutjnl-2019-319809(gutjnl-2019-319809)
PubMed
Article
Google Scholar
Caminero A, Herrán AR, Nistal E, Pérez-Andrés J, Vaquero L, Vivas S, Ruiz de Morales JMG, Albillos SM, Casqueiro J (2014) Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease. FEMS Microbiol Ecol 88(2):309–319. https://doi.org/10.1111/1574-6941.12295
CAS
PubMed
Article
Google Scholar
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science (New York, NY) 326(5960):1694–1697. https://doi.org/10.1126/science.1177486
CAS
Article
Google Scholar
Curtis MA, Zenobia C, Darveau RP (2011) The relationship of the oral microbiotia to periodontal health and disease. Cell Host Microbe 10(4):302–306
CAS
PubMed
PubMed Central
Article
Google Scholar
Wieser H (1995) 1 The precipitating factor in coeliac disease. Bailliere’s Clin Gastroenterol 9(2):191–207
CAS
Article
Google Scholar
Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science (New York, NY) 297(5590):2275–2279. https://doi.org/10.1126/science.1074129
CAS
Article
Google Scholar
Vader LW, de Ru A, van der Wal Y, Kooy YM, Benckhuijsen W, Mearin ML, Drijfhout JW, van Veelen P, Koning F (2002) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195(5):643–649
CAS
PubMed
PubMed Central
Article
Google Scholar
Helmerhorst EJ, Zamakhchari M, Schuppan D, Oppenheim FG (2010) Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity. PLoS ONE 5(10):e13264–e13264. https://doi.org/10.1371/journal.pone.0013264
CAS
PubMed
PubMed Central
Article
Google Scholar
Francavilla R, Ercolini D, Piccolo M, Vannini L, Siragusa S, De Filippis F, De Pasquale I, Di Cagno R, Di Toma M, Gozzi G, Serrazanetti DI, De Angelis M, Gobbetti M (2014) Salivary microbiota and metabolome associated with celiac disease. Appl Environ Microbiol 80(11):3416–3425. https://doi.org/10.1128/aem.00362-14
PubMed
PubMed Central
Article
Google Scholar
Tian N, Faller L, Leffler DA, Kelly CP, Hansen J, Bosch JA, Wei G, Paster BJ, Schuppan D, Helmerhorst EJ (2017) Salivary gluten degradation and oral microbial profiles in healthy individuals and celiac disease patients. Appl Environ Microbiol 83(6):e03330–e13316. https://doi.org/10.1128/AEM.03330-16
CAS
PubMed
PubMed Central
Article
Google Scholar
Iaffaldano L, Granata I, Pagliuca C, Esposito MV, Casaburi G, Salerno G, Colicchio R, Piccirillo M, Ciacci C, Del Vecchio BG, Guarracino MR, Salvatore P, Salvatore F, D’Argenio V, Sacchetti L (2018) Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients. Scientific Reports 8(1):11047. https://doi.org/10.1038/s41598-018-29443-1
CAS
PubMed
PubMed Central
Article
Google Scholar
Païssé S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, Lelouvier B (2016) Comprehensive description of blood microbiome from healthy donors assessed by 16 S targeted metagenomic sequencing. Transfusion 56(5):1138–1147
PubMed
Article
Google Scholar
Potgieter M, Bester J, Kell DB, Pretorius E (2015) The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 39(4):567–591
PubMed
PubMed Central
Article
Google Scholar
Proal AD, Albert PJ, Marshall TG (2014) Inflammatory disease and the human microbiome. Discov Med 17(95):257–265
PubMed
Google Scholar
Castillo DJ, Rifkin RF, Cowan DA, Potgieter M (2019) The Healthy Human Blood Microbiome: Fact or Fiction? Front Cell Infect Microbiol 9:148–148. https://doi.org/10.3389/fcimb.2019.00148
CAS
PubMed
PubMed Central
Article
Google Scholar
Amar J, Lange C, Payros G, Garret C, Chabo C, Lantieri O, Courtney M, Marre M, Charles MA, Balkau B (2013) Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the DESIR study. PLoS One 8(1). https://doi.org/10.1371/journal.pone.0054461
Sato J, Kanazawa A, Ikeda F, Yoshihara T, Goto H, Abe H, Komiya K, Kawaguchi M, Shimizu T, Ogihara T (2014) Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 37(8):2343–2350
CAS
PubMed
Article
Google Scholar
Serena G, Davies C, Cetinbas M, Sadreyev RI, Fasano A (2019) Analysis of blood and fecal microbiome profile in patients with celiac disease. Human Microb J. https://doi.org/10.1016/j.humic.2018.12.001
Article
Google Scholar
Galipeau HJ, Verdu EF (2014) Gut microbes and adverse food reactions: focus on gluten related disorders. Gut Microbes 5(5):594–605. https://doi.org/10.4161/19490976.2014.969635
PubMed
PubMed Central
Article
Google Scholar
Lebwohl B, Ludvigsson JF, Green PH (2015) Celiac disease and non-celiac gluten sensitivity. BMJ 351:h4347. https://doi.org/10.1136/bmj.h4347
CAS
PubMed
PubMed Central
Article
Google Scholar
Rossi M, Schwartz KB (2010) Editorial: celiac disease and intestinal bacteria: not only gluten? J Leukoc Biol 87(5):749–751. https://doi.org/10.1189/jlb.1209784
CAS
PubMed
Article
Google Scholar
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107(26):11971–11975
PubMed
Article
PubMed Central
Google Scholar
Salminen S, Gibson GR, McCartney AL, Isolauri E (2004) Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53(9):1388–1389. https://doi.org/10.1136/gut.2004.041640
CAS
PubMed
PubMed Central
Article
Google Scholar
Decker E, Engelmann G, Findeisen A, Gerner P, Laass M, Ney D, Posovszky C, Hoy L, Hornef MW (2010) Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 125(6):e1433–1440. https://doi.org/10.1542/peds.2009-2260
PubMed
Article
Google Scholar
Emilsson L, Magnus MC, Stordal K (2015) Perinatal risk factors for development of celiac disease in children, based on the prospective norwegian mother and child cohort study. Clin Gastroenterol Hepatol 13(5):921–927. https://doi.org/10.1016/j.cgh.2014.10.012
PubMed
Article
Google Scholar
Namatovu F, Olsson C, Lindkvist M, Myléus A, Högberg U, Ivarsson A, Sandström O (2016) Maternal and perinatal conditions and the risk of developing celiac disease during childhood. BMC Pediat 16:77–77. https://doi.org/10.1186/s12887-016-0613-y
Article
Google Scholar
Mårild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF (2012) Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 142(1):39–45.e33. https://doi.org/10.1053/j.gastro.2011.09.047
PubMed
Article
Google Scholar
Canova C, Zabeo V, Pitter G, Romor P, Baldovin T, Zanotti R, Simonato L (2014) Association of maternal education, early infections, and antibiotic use with celiac disease: a population-based birth cohort study in northeastern Italy. Am J Epidemiol 180(1):76–85. https://doi.org/10.1093/aje/kwu101
PubMed
Article
Google Scholar
Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22(6):458–478. https://doi.org/10.1016/j.molmed.2016.04.003
CAS
PubMed
PubMed Central
Article
Google Scholar
Ianiro G, Tilg H, Gasbarrini A (2016) Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65(11):1906–1915. https://doi.org/10.1136/gutjnl-2016-312297
CAS
PubMed
Article
Google Scholar
Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, DL A, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, Blaser MJ (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aad7121(8 (343):343ra382)
PubMed
PubMed Central
Article
Google Scholar
Pozo-Rubio T, de Palma G, Mujico JR, Olivares M, Marcos A, Acuña MD, Polanco I, Sanz Y, Nova E (2013) Influence of early environmental factors on lymphocyte subsets and gut microbiota in infants at risk of celiac disease; the PROFICEL study. Nutr Hosp 28(2):464–473. https://doi.org/10.3305/nh.2013.28.2.6310
PubMed
Article
Google Scholar
Dydensborg Sander S, Nybo Andersen AM, Murray JA, Karlstad O, Husby S, Stordal K (2019) Association Between Antibiotics in the First Year of Life and Celiac Disease. Gastroenterology 156(8):2217–2229. https://doi.org/10.1053/j.gastro.2019.02.039
PubMed
Article
Google Scholar
Marild K, Ye W, Lebwohl B, Green PH, Blaser MJ, Card T, Ludvigsson JF (2013) Antibiotic exposure and the development of coeliac disease: a nationwide case-control study. BMC Gastroenterol 13:109. https://doi.org/10.1186/1471-230X-13-109
PubMed
PubMed Central
Article
Google Scholar
Bittker SS, Bell KR (2019) Potential risk factors for celiac disease in childhood: a case-control epidemiological survey. Clin Exp Gastroenterol 12:303–319. https://doi.org/10.2147/CEG.S210060
CAS
PubMed
PubMed Central
Article
Google Scholar
Bennett BJ, Hall KD, Hu FB, McCartney AL, Roberto C (2015) Nutrition and the science of disease prevention: a systems approach to support metabolic health. Ann N Y Acad Sci 1352:1–12. https://doi.org/10.1111/nyas.12945
PubMed
PubMed Central
Article
Google Scholar
Ordovas JM, Ferguson LR, Tai ES, Mathers JC (2018) Personalised nutrition and health. BMJ. https://doi.org/10.1136/bmj.k2173(361:bmj k2173)
PubMed
PubMed Central
Article
Google Scholar
Loos RJF (2019) From nutrigenomics to personalizing diets: are we ready for precision medicine? Am J Clin Nutr 109(1):1–2. https://doi.org/10.1093/ajcn/nqy364
PubMed
PubMed Central
Article
Google Scholar
Macready AL, Fallaize R, Butler LT, Ellis JA, Kuznesof S, Frewer LJ, Celis-Morales C, Livingstone KM, Araujo-Soares V, Fischer AR, Stewart-Knox BJ, Mathers JC, Lovegrove JA (2018) Application of behavior change techniques in a personalized nutrition electronic health intervention study: protocol for the web-based food4me randomized controlled trial. JMIR Res Protoc 7(4):e87. https://doi.org/10.2196/resprot.8703
PubMed
PubMed Central
Article
Google Scholar
Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15(1):73. https://doi.org/10.1186/s12967-017-1175-y
CAS
PubMed
PubMed Central
Article
Google Scholar
Schmidt TSB, Raes J, Bork P (2018) The human gut microbiome: from association to modulation. Cell 172(6):1198–1215. https://doi.org/10.1016/j.cell.2018.02.044
CAS
PubMed
Article
Google Scholar
Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, Patil KR, Bork P, Typas A (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555(7698):623–628. https://doi.org/10.1038/nature25979
CAS
PubMed
PubMed Central
Article
Google Scholar
Kumar M, Mathur T, Joshi V, Upadhyay DJ, Inoue SI, Masuda N (2018) Effect of DS-2969b, a novel GyrB inhibitor, on rat and monkey intestinal microbiota. Anaerobe 51:120–123. https://doi.org/10.1016/j.anaerobe.2018.04.017
CAS
PubMed
Article
Google Scholar
Dudek-Wicher RK, Junka A, Bartoszewicz M (2018) The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol 13(2):85–92. https://doi.org/10.5114/pg.2018.76005
CAS
PubMed
PubMed Central
Article
Google Scholar
Statovci D, Aguilera M, MacSharry J, Melgar S (2017) The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front Immunol 8:838. https://doi.org/10.3389/fimmu.2017.00838
CAS
PubMed
PubMed Central
Article
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820
CAS
Article
PubMed
Google Scholar
Pinzone MR, Celesia BM, Di Rosa M, Cacopardo B, Nunnari G (2012) Microbial translocation in chronic liver diseases. Int J Microbiol 2012:694629. https://doi.org/10.1155/2012/694629
PubMed
PubMed Central
Article
Google Scholar
World Health Organization (2003) Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation 916. https://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf;jsessionid=4D311C3BE1D830F26EDDA65210DE5A22?sequence=1
Akobeng AK, Thomas AG (2008) Systematic review: tolerable amount of gluten for people with coeliac disease. Aliment Pharmacol Ther 27(11):1044–1052. https://doi.org/10.1111/j.1365-2036.2008.03669.x
CAS
PubMed
Article
Google Scholar
Ciacci C, Ciclitira P, Hadjivassiliou M, Kaukinen K, Ludvigsson JF, McGough N, Sanders DS, Woodward J, Leonard JN, Swift GL (2015) The gluten-free diet and its current application in coeliac disease and dermatitis herpetiformis. United Eur Gastroenterol J 3(2):121–135. https://doi.org/10.1177/2050640614559263
CAS
Article
Google Scholar
Hogberg L, Grodzinsky E, Stenhammar L (2003) Better dietary compliance in patients with coeliac disease diagnosed in early childhood. Scand J Gastroenterol 38(7):751–754
CAS
PubMed
Article
Google Scholar
De Palma G, Nadal I, Collado MC, Sanz Y (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102(8):1154–1160. https://doi.org/10.1017/S0007114509371767
CAS
PubMed
Article
Google Scholar
Jackson FW (2010) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects - comment by Jackson. Br J Nutr 104(5):773. https://doi.org/10.1017/s0007114510001960
CAS
PubMed
Article
Google Scholar
Sarin SK, Pande A, Schnabl B (2019) Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol 70(2):260–272. https://doi.org/10.1016/j.jhep.2018.10.019
PubMed
Article
Google Scholar
Khoruts A (2018) Targeting the microbiome: from probiotics to fecal microbiota transplantation. Gen Med 10(1):80. https://doi.org/10.1186/s13073-018-0592-8
CAS
Article
Google Scholar
Roncoroni L, Bascunan KA, Doneda L, Scricciolo A, Lombardo V, Branchi F, Ferretti F, Dell'Osso B, Montanari V, Bardella MT, Elli L (2018) A low fodmap gluten-free diet improves functional gastrointestinal disorders and overall mental health of celiac disease patients: a randomized controlled trial. Nutrients. https://doi.org/10.3390/nu10081023
PubMed
PubMed Central
Article
Google Scholar
Reddel S, Putignani L, Del Chierico F (2019) The impact of low-FODMAPs, gluten-free, and ketogenic diets on gut microbiota modulation in pathological conditions. Nutrients. https://doi.org/10.3390/nu11020373
PubMed
PubMed Central
Article
Google Scholar
Dieterich W, Schuppan D, Schink M, Schwappacher R, Wirtz S, Agaimy A, Neurath MF, Zopf Y (2019) Influence of low FODMAP and gluten-free diets on disease activity and intestinal microbiota in patients with non-celiac gluten sensitivity. Clin Nutr 38(2):697–707. https://doi.org/10.1016/j.clnu.2018.03.017
PubMed
Article
Google Scholar
Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14(11):1585–1596. https://doi.org/10.1002/ibd.20525
PubMed
Article
Google Scholar
Laparra JM, Sanz Y (2010) Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem 109(4):801–807. https://doi.org/10.1002/jcb.22459
CAS
PubMed
Article
Google Scholar
Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venalainen J, Maki M, Kaukinen K (2008) Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol 152(3):552–558. https://doi.org/10.1111/j.1365-2249.2008.03635.x
CAS
PubMed
PubMed Central
Article
Google Scholar
Smecuol E, Hwang HJ, Sugai E, Corso L, Chernavsky AC, Bellavite FP, Gonzalez A, Vodanovich F, Moreno ML, Vazquez H, Lozano G, Niveloni S, Mazure R, Meddings J, Maurino E, Bai JC (2013) Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol 47(2):139–147. https://doi.org/10.1097/MCG.0b013e31827759ac
PubMed
Article
Google Scholar
Olivares M, Castillejo G, Varea V, Sanz Y (2014) Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr 112(1):30–40. https://doi.org/10.1017/s0007114514000609
CAS
PubMed
Article
Google Scholar
Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M, Giovannini C, D'Archivio M, Landolfo F, Parrilli G, Minervini F, Arendt E, Gobbetti M (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 70(2):1088–1096. https://doi.org/10.1128/aem.70.2.1088-1096.2004
PubMed
PubMed Central
Article
Google Scholar
Greco L, Gobbetti M, Auricchio R, Di Mase R, Landolfo F, Paparo F, Di Cagno R, De Angelis M, Rizzello CG, Cassone A, Terrone G, Timpone L, D'Aniello M, Maglio M, Troncone R, Auricchio S (2011) Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol 9(1):24–29. https://doi.org/10.1016/j.cgh.2010.09.025
PubMed
Article
Google Scholar
De Angelis M, Rizzello CG, Fasano A, Clemente MG, De Simone C, Silano M, De Vincenzi M, Losito I, Gobbetti M (2006) VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue. Biochim Biophys Acta 1762(1):80–93. https://doi.org/10.1016/j.bbadis.2005.09.008
CAS
PubMed
Article
Google Scholar
Drabinska N, Jarocka-Cyrta E, Markiewicz LH, Krupa-Kozak U (2018) The effect of oligofructose-enriched inulin on faecal bacterial counts and microbiota-associated characteristics in celiac disease children following a gluten-free diet: results of a randomized placebo-controlled trial. Nutrients. https://doi.org/10.3390/nu10020201
PubMed
PubMed Central
Article
Google Scholar
Cammarota G, Ianiro G, Tilg H, Rajilic-Stojanovic M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, Segal J, Aloi M, Masucci L, Molinaro A, Scaldaferri F, Gasbarrini G, Lopez-Sanroman A, Link A, de Groot P, de Vos WM, Hogenauer C, Malfertheiner P, Mattila E, Milosavljevic T, Nieuwdorp M, Sanguinetti M, Simren M, Gasbarrini A, European FMTWG (2017) European consensus conference on faecal microbiota transplantation in clinical practice. Gut 66(4):569–580. https://doi.org/10.1136/gutjnl-2016-313017
PubMed
Article
Google Scholar
Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N, Iqbal TH (2017) Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory clostridium difficile infection. Aliment Pharmacol Ther 46(5):479–493. https://doi.org/10.1111/apt.14201
CAS
PubMed
Article
Google Scholar
van Beurden YH, van Gils T, van Gils NA, Kassam Z, Mulder CJ, Aparicio-Pages N (2016) Serendipity in refractory celiac disease: full recovery of duodenal villi and clinical symptoms after fecal microbiota transfer. J Gastrointestin Liver Dis 25(3):385–388. https://doi.org/10.15403/jgld.2014.1121.253.cel
PubMed
Article
Google Scholar
Sanchez E, Ribes-Koninckx C, Calabuig M, Sanz Y (2012) Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol 65(9):830–834. https://doi.org/10.1136/jclinpath-2012-200759
CAS
PubMed
Article
Google Scholar
Roberts SE, Williams JG, Meddings D, Davidson R, Goldacre MJ (2009) Perinatal risk factors and coeliac disease in children and young adults: a record linkage study. Aliment Pharmacol Ther 29(2):222–231. https://doi.org/10.1111/j.1365-2036.2008.03871.x
CAS
PubMed
Article
Google Scholar
Sevelsted A, Stokholm J, Bønnelykke K, Bisgaard H (2014) Cesarean section and chronic immune disorders. Pediatrics. https://doi.org/10.1542/peds.2014-0596(peds.2014-0596)
PubMed
Article
Google Scholar
Adlercreutz EH, Wingren CJ, Vincente RP, Merlo J, Agardh D (2015) Perinatal risk factors increase the risk of being affected by both type 1 diabetes and coeliac disease. Acta Paediatr 104(2):178–184. https://doi.org/10.1111/apa.12836
PubMed
Article
Google Scholar
Koletzko S, Lee HS, Beyerlein A, Aronsson CA, Hummel M, Liu E, Simell V, Kurppa K, Lernmark A, Hagopian W, Rewers M, She JX, Simell O, Toppari J, Ziegler AG, Krischer J, Agardh D (2018) cesarean section on the risk of celiac disease in the offspring: the teddy study. J Pediatr Gastroenterol Nutr 66(3):417–424. https://doi.org/10.1097/mpg.0000000000001682
PubMed
PubMed Central
Article
Google Scholar
Dydensborg Sander S, Hansen AV, Stordal K, Andersen AN, Murray JA, Husby S (2018) Mode of delivery is not associated with celiac disease. Clin Epidemiol 10:323–332. https://doi.org/10.2147/clep.S152168
PubMed
PubMed Central
Article
Google Scholar
Francavilla R, Piccolo M, Francavilla A, Polimeno L, Semeraro F, Cristofori F, Castellaneta S, Barone M, Indrio F, Gobbetti M, De Angelis M (2019) Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent ibs-type symptoms: a randomized, double-blind, placebo-controlled. Multicenter Trial J Clin Gastroenterol 53(3):e117–e125. https://doi.org/10.1097/mcg.0000000000001023
CAS
PubMed
Article
Google Scholar
Martinello F, Roman CF, Souza PA (2017) EFFECTS OF PROBIOTIC INTAKE ON INTESTINAL BIFIDOBACTERIA OF CELIAC PATIENTS. Arq Gastroenterol 54(2):85–90. https://doi.org/10.1590/s0004-2803.201700000-07
PubMed
Article
Google Scholar
Pinto-Sanchez MI, Smecuol EC, Temprano MP, Sugai E, Gonzalez A, Moreno ML, Huang X, Bercik P, Cabanne A, Vazquez H, Niveloni S, Mazure R, Maurino E, Verdu EF, Bai JC (2017) Bifidobacterium infantis NLS super strain reduces the expression of alpha-defensin-5, a marker of innate immunity, in the mucosa of active celiac disease patients. J Clin Gastroenterol 51(9):814–817. https://doi.org/10.1097/mcg.0000000000000687
PubMed
Article
Google Scholar
Harnett J, Myers SP, Rolfe M (2016) Probiotics and the microbiome in celiac disease: a randomised controlled trial. Evid Based Compl Alternat Med 2016:9048574. https://doi.org/10.1155/2016/9048574
Article
Google Scholar
Uusitalo U, Andren Aronsson C, Liu X, Kurppa K, Yang J, Liu E, Skidmore J, Winkler C, Rewers MJ, Hagopian WA, She JX, Toppari J, Ziegler AG, Akolkar B, Norris JM, Virtanen SM, Krischer JP, Agardh D (2019) Early probiotic supplementation and the risk of celiac disease in children at genetic risk. Nutrients. https://doi.org/10.3390/nu11081790
PubMed
PubMed Central
Article
Google Scholar
Primec M, Klemenak M, Di Gioia D, Aloisio I, Bozzi Cionci N, Quagliariello A, Gorenjak M, Micetic-Turk D, Langerholc T (2019) Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-alpha and short-chain fatty acids. Clin Nutr 38(3):1373–1381. https://doi.org/10.1016/j.clnu.2018.06.931
CAS
PubMed
Article
Google Scholar
Quagliariello A, Aloisio I, Bozzi Cionci N, Luiselli D, D'Auria G, Martinez-Priego L, Perez-Villarroya D, Langerholc T, Primec M, Micetic-Turk D, Di Gioia D (2016) Effect of bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: a pilot study. Nutrients. https://doi.org/10.3390/nu8100660
PubMed
PubMed Central
Article
Google Scholar
Klemenak M, Dolinsek J, Langerholc T, Di Gioia D, Micetic-Turk D (2015) Administration of bifidobacterium breve decreases the production of tnf-alpha in children with celiac disease. Dig Dis Sci 60(11):3386–3392. https://doi.org/10.1007/s10620-015-3769-7
CAS
PubMed
Article
Google Scholar