Skip to main content

Advertisement

Log in

Region-specific differences in the human myenteric plexus: an immunohistochemical study using donated elderly cadavers

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose and methods

To identify site-dependent and individual differences in neuronal nitric oxide synthase (nNOS)-positive nerves of the myenteric plexus, we examined full-thickness walls of the stomach, pylorus, duodenum, ileum, colon, and rectum in 7 male and 8 female cadavers (mean ages, 80 and 87 years, respectively).

Results

The areas occupied by nNOS-positive nerve fibers in the myenteric plexus were fragmentary and overlapped with areas occupied by vasoactive intestinal polypeptide-positive fibers. The nNOS-positive fiber-containing areas per 1-mm length of intermuscular space tended to be larger at more anal sites, with positive areas four times greater in the rectum than in the stomach. Interindividual differences in rectal areas were extremely large, ranging from 0.017 mm2 in one 80-year-old man to 0.067 mm2 in another 80-year-old man. Similarly, the numbers of nNOS-positive ganglion cell bodies per 1-mm length in the rectum ranged from 4 to 28. These areas and numbers were weakly correlated (r = 0.62; p = 0.02). Interindividual differences in the rectum appeared not to depend on either age or gender.

Conclusions

Anatomic studies using donated cadavers carried the advantage of obtaining any parts of intestine within an individual, in contrast to surgically removed specimens. We speculated excess control of evacuation with laxatives as one of causes of atrophy of the rectal myenteric plexus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Porter AJ, Wattchow DA, Brookes SJH, Costa M (2002) Cholibergic and nitergic interneurons in the myenteric plexus of the human colon. Gut 51(1):70–75. doi:10.1136/gut.51.1.70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Anlauf M, Schåfer MKH, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459(1):90–111. doi:10.1002/cne.10599

    Article  CAS  PubMed  Google Scholar 

  3. Brehmer A, Schrödl F, Neuhuber W (2006) Morphology of VIP/nNOS-immunorective myenteric neurons in the human gut. Histochem Cell Biol 125(5):557–565. doi:10.1007/s00418-005-0107-8

    Article  CAS  PubMed  Google Scholar 

  4. Wattchow DA, Furness JB, Costa M (1988) Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterol 95(1):32–41

    CAS  Google Scholar 

  5. Wattchow D, Brookes S, Murphy E, Carbone S, De Fontgalland D, Costa M (2008) Regional variation in the neurochemical coding of the myenteric plexus of the human colon and changes in patients with slow transit constipation. Neurogastroenterol Motil 20(12):1298–1305. doi:10.1111/j.1365-2982.2008.01165.x

    Article  CAS  PubMed  Google Scholar 

  6. Ippolito C, Segnani C, De Giorgio R, Blandizzi C, Mattii L, Castagna M, Moscato S, Dolfi A, Bernardini N (2009) Quantitative evaluation of myenteric ganglion cells in normal human left colon: implications for histopathological analysis. Cell Tissue Res 336(2):191–201. doi:10.1007/s00441-009-0770-5

    Article  PubMed  Google Scholar 

  7. Beck M, Schlabrakowski A, Schrödl F, Neuhuber W, Brehmer A (2009) ChAT and NOS in human myenteric neurons: co-existence and co-absence. Cell Tissue Res 338(1):37–51. doi:10.1007/s00441-009-0852-4

    Article  CAS  PubMed  Google Scholar 

  8. Hieda K, Cho KH, Arakawa T, Fujimiya M, Murakami G, Matsubara M (2013) Nerves in the intersphincteric space of the human anal canal with special reference to their continuation to the enteric nerve plexus of the rectum. Clin Anat 26:843–854. doi:10.1002/ca.22227

    Google Scholar 

  9. Aldridge RT, Campbell PE (1968) Ganglion cell distribution in the normal rectum and anal canal. A basis for the diagnosis of Hirschsprung’s disease by anorectal biopsy. J Pedatr Surg 3(4):475–489

    Article  CAS  Google Scholar 

  10. Ferri GL, Adrian TE, Allen JM, Soimero L, Cancellieri A, Yeats JC, Blank M, Polak JM, Bloom SR (1988) Intramural distribution of regulatory peptides in the sigmoid-recto-anal region of the human gut. Gut 29(6):762–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hörsch D, Fink T, Bűchler M, Weihe E (1993) Regional specificities in the distribution, chemical phenotypes, and coexistence patterns of neuropeptide containing nerve fibers in the human anal canal. J Comp Neurol 335(3):381–401

    Article  PubMed  Google Scholar 

  12. Hörsch D, Day R, Seidah NG, Weihe E, Schāfer MK (1997) Immunohistochemical localization of the pro-peptide processing enzymes PC1/PC3 and PC2 in the human anal canal. Peptides 18(5):755–760

    Article  PubMed  Google Scholar 

  13. Stebbing JF (1998) Nitric oxide synthase neurons and neuromuscular behavior of the anorectum. Ann R Coll Surg Engl 80(2):137–345

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Jones OM, Brading AF, Mortensen NJ (2003) Role of nitric oxide in anorectal function of normal and neuronal nitric oxide synthase knowckout mice: a novel approach to anorectal disease. Dis Colon Rectum 46(7):963–970

    Article  PubMed  Google Scholar 

  15. Terauchi A, Kobayashi D, Mashimo H (2005) Distinct roles of nitric oxide synthases and interstitial cells of Cajal in rectoanal relaxation. Am J Physiol Gastrointest Liver Physiol 289(2):G291–299. doi:10.1152/ajpgi.00005.2005

    Article  CAS  PubMed  Google Scholar 

  16. Stavreva G, Radomirov R (2012) Region-related modular nerve-dependent motor activity in anorectum-cholinergic and nitergic contriobution to rat model. Acta Neurobiol Exp 72(2):185–194

    Google Scholar 

  17. Bernard CE, Gibbon SJ, Gomez-Pinilla PJ, Luren MS, Schmalz PF, Roeder JL, Linden D, Cima RR, Dozois EJ, Larson DW, Camilleri M, Zinsmeister AR, Pozo MJ, Hicks GA, Farrugia G (2009) Effect of age on the enteric nervous system of the human colon. Neurogastroenterol Motil 21(7):746–754. doi:10.1111/j.1365-2982.2008.01245.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  CAS  PubMed  Google Scholar 

  19. Tomita R, Tanjoh K, Fujisaki S, Fukuzawa M (1999) The role of nitric oxide (NO) in the human pyloric sphincter. Hepatogastroenterology 46(29):2999–3003

    CAS  PubMed  Google Scholar 

  20. Tomita R (2009) Regulation of vasoactive intestinal peptide and substance P in the human pyloric sphincter. Hepatogastroenterology 56(94–95):1403–1406

    CAS  PubMed  Google Scholar 

  21. Gershon MD, Kirchgessner AL, Wade PR (1994) Functional anatomy of the enteric nervous system. In: Johnson LR, Alpers DH, Christensen J, Jacobson ED, Walsh JH (eds) Physiology of the gastrointestinal tract, 4th edn. Raven press, New York, pp 381–422

    Google Scholar 

  22. Furness JB, Bornstein JC, Kunze WAA, Clerc N (1999) The enteric nervous system and its extrinsic connections. In: Yamada T, Alpers DH, Laine L, Owyang C, Powell DW (eds) Textbook of gastroenterology, vol 1, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia, pp 11–35

    Google Scholar 

  23. Ekblad E, Bauer AJ (2004) Role of vasoactive intestinal polypeptide and inflammatory mediators in enteric neuronal plasticity. Neurogastroenterol Motil 16(suppl 1):123–128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the people who donated their cadavers to Tokyo Dental College for research and education on human anatomy without any economic benefit. We also thank their families for agreeing to these donations as well as for their patience in awaiting the return of their relatives’ bones after study. This work was supported by a grant (0620220-1) from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baik Hwan Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S.E., Hieda, K., Kim, J.H. et al. Region-specific differences in the human myenteric plexus: an immunohistochemical study using donated elderly cadavers. Int J Colorectal Dis 29, 783–791 (2014). https://doi.org/10.1007/s00384-014-1869-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-014-1869-z

Keywords

Navigation