Skip to main content

Advertisement

Log in

Enteric neurons of the esophagus: an immunohistochemical study using donated elderly cadavers

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

To describe and discuss the normal anatomy and function of enteric neurons in the esophagus of aged individuals.

Method

We examined ganglion cells in esophagus specimens obtained from 15 elderly cadavers without any macroscopic pathology in the mediastinum and abdomen. Neuronal nitric oxide synthase and vasoactive intestinal polypeptide were used as parasympathetic nerve markers, and tyrosine hydroxylase as a sympathetic nerve marker.

Results

The thoracic and abdominal esophagus contained a well-developed myenteric nerve plexus (S100 protein-positive area) in the intermuscular layer: 0.02–0.03 mm2 per 1-mm length of the circular esophageal wall. The cervical esophagus usually contained no ganglion cells. The number of parasympathetic ganglion cells was maximal in the upper or middle thoracic esophagus (mean 18–23 cells per section), whereas sympathetic cells were considerably less numerous at any sites (mean 1–3 cells).

Conclusion

In comparison with previous data from elderly cadavers, the esophagus carried much fewer ganglion cells than the intestine and colon; sympathetic cells were particular less numerous. Esophageal smooth muscle exhibits a unique mode of peristalsis characterized by a rebound contraction with a long latency after stimulation. This type of peristalsis appears to be regulated by inhibitory, nNOS-positive nerves with a sparse distribution, which seems to account for the long-span peristalsis unique to the esophagus. The extreme sparsity of ganglion cells in the cervical esophagus suggests that enteric neuron-integrated peristalsis, like that in the intestine and colon, is unlikely. Surgical treatment of the esophagus is likely to change or impair these unique features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aggestrup S, Uddman R, Jensen SL, Håkanson R, Sundler F, Schaffalitzky de Muckadell O, Emson P (1986) Regulatory peptides in lower esophageal sphincter of pig and man. Dig Dis Sci 31:1370–1375

    Article  CAS  PubMed  Google Scholar 

  2. Anlauf M, Schåfer MKH, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111

    Article  CAS  PubMed  Google Scholar 

  3. Anthony A, Schepelmann S, Guillaume JL, Strosberg AD, Dhillon AP, Pounder RE, Wakefield AJ (1998) Localization of the beta3-adrenoreceptor in the human gastrointestinal tract: an immunohistochemical study. Aliment Pharmacol Ther 12:519–525

    Article  CAS  PubMed  Google Scholar 

  4. Beck M, Schlabrakowski A, Schrödl F, Neuhuber W, Brehmer (2009) ChAT and NOS in human myenteric neurons: co-existence and co-absence. Cell Tissue Res 338:37–51

    Article  CAS  PubMed  Google Scholar 

  5. Brehmer A, Schrödl F, Neuhuber W (2006) Morphology of VIP/nNOS-immunorective myenteric neurons in the human gut. Histochem Cell Biol 125:557–565

    Article  CAS  PubMed  Google Scholar 

  6. Breuer C, Neuhuber WL, Wörl J (2004) Development of neuromuscular junctions in mouse esophagus: morphology suggests a role for enteric co-innervation during maturation of vagal myoneural contacts. J Comp Neurol 475:47–69

    Article  PubMed  Google Scholar 

  7. Desai H, Uddman R, Malina J, Sundler F (1992) Helospectin-like immunoreactivity in the esophagus. Regul Pept 40:363–371

    Article  CAS  PubMed  Google Scholar 

  8. Furness JB, Bornstein JC, Kunze WAA, Clerc N (1999) The enteric nervous system and its extrinsic connections. In: Yamada T, Alpers DH, Laine L, Owyang C, Powell DW (eds) Textbook of gastroenterology, vol 1, 278. Williams and Wilkins, Lippincott, Philadelphia, pp 11–35

    Google Scholar 

  9. Gershon MD, Kirchgessner AL, Wade PR (1994) Functional anatomy of the enteric nervous system. In: Johnson LR, Alpers DH, Christensen J, Jacobson ED, Walsh JH (eds) Physiology of the gastrointestinal tract. Raven Press, New York, pp 381–422

    Google Scholar 

  10. Goyal RK, Chaudhury A (2008) Physiology of normal esophageal motility. J Clin Gastroenterol 42:610–619

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hieda K, Cho KH, Arakawa T, Fujimiya M, Murakami G, Matsubara M (2013) Nerves in the intersphincteric space of the human anal canal with special reference to their continuation to the enteric nerve plexus of the rectum. Clin Anat 26:843–854

    PubMed  Google Scholar 

  12. Hinata N, Murakami G (2014) The urethral rhabdosphincter, levator ani muscle and perineal membrane: a review. Biomed Res Int 2014:906921

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hinata N, Murakami G, Miyabe H, Tanaka K, Abe S, Fujimiya M, Takenaka A, Fujisawa M (2014) Urethral sphincter fatigue after robot-assisted radical prostatectomy: descriptive questionnaire-based study and anatomical basis. Urology 84:144–148

    Article  PubMed  Google Scholar 

  14. Hoshino M, Omura N, Yano F, Tsuboi K, Kashiwagi H, Yanaga K (2013) Immunohistochemical study of the muscularis externa of the esophagus in achalasia patients. Dis Esophagus 26:14–21

    Article  CAS  PubMed  Google Scholar 

  15. Hwang SE, Hieda K, Kim JH, Murakami G, Abe S, Matsubara A, Cho BH (2014) Region-specific difference in the human myenteric plexus: an immunohistochemical study using donated elderly cadavers. Int J Colorect Dis 29:783–791

    Article  Google Scholar 

  16. Ippolito C, Segnani C, De Giorgio R, Blandizzi C, Mattii L, Castagna M, Moscato S, Dolfi A, Bernardini N (2009) Quantitative evaluation of myenteric ganglion cells in normal human left colon: implications for histopathological analysis. Cell Tissue Res 336:191–201

    Article  PubMed  Google Scholar 

  17. Katori Y, Cho BH, Song CH, Fujimiya M, Murakami G, Kawase T (2010) Smooth-to-striated muscle transition in human esophagus: an immunohistochemical study using fetal and adult materials. Ann Anat 192:33–41

    Article  CAS  PubMed  Google Scholar 

  18. Kuramoto H, Kadowaki M, Yamamoto T, Kuwano R (2006) Carbindin is predominantly expressed in nitergic neurons in rat esophagus. Neurosci Lett 401:174–177

    Article  CAS  PubMed  Google Scholar 

  19. Motohashi O, Suzuki M, Shida N, Umezawa T, Ohtoh Y, Sakurai Y, Yoshimoto T (1995) Subarachnoid heamorrhage induced proliferation of leptomeningeal cells and deposition of extracellular matricies in the arachnoid granulations and subarachnoid space. Acta Neurochir 136:88–91

    Article  CAS  PubMed  Google Scholar 

  20. Porter AJ, Wattchow DA, Brookes SJH, Costa M (2002) Cholibergic and nitergic interneurons in the myenteric plexus of the human colon. Gut 51:70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rohof WO, Aronica E, Beaumont H, Troost D, Boeckxstaens GE (2012) Localization of mGluR5, GABAA, and cannabinoid receptors on the vago-vagal reflex pathway responsible for transient lower esophageal sphincter relaxation in humans: an immunohistochemical study. Neurogastroenterol Motil 24:383-e173

    Article  PubMed  Google Scholar 

  22. Sang Q, Young HM (1997) Development of nicotinic receptor clusters and innervations accompanying the change in muscle phenotype in the mouse esophagus. J Comp Neurol 386:119–136

    Article  CAS  PubMed  Google Scholar 

  23. Uddman R, Luts A, Absood A, Arimura A, Ekelund M, Desai H, Håkanson R, Hambreaus G, Sundler F (1991) PACAP, a VIP-like peptide, in neurons of the esophagus. Regul Pept 36:415–422

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe Y, Ando H, Seo T, Katsuno S, Marui Y, Ono Y, Torihashi S (2002) Attenuated nitergic inhibitory neurotransmission to interstitial cells of Cajal in the lower esophageal sphincter with esophageal achalasia in children. Pediatr Int 44:145–148

    Article  PubMed  Google Scholar 

  25. Wattchow D, Brookes S, Murphy E, Carbone S, De Fontgalland D, Costa M (2008) Regional variation in the neurochemical coding of the myenteric plexus of the human colon and changes in patients with slow transit constipation. Neurogastroenterol Motil 20:1298–1305

    Article  CAS  PubMed  Google Scholar 

  26. Wattchow DA, Furness JB, Costa M (1988) Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterol 95:32–41

    Article  CAS  Google Scholar 

  27. Wőrl J, Neuhuber WL (2005) Enteric co-innervation of motor endplates in the esophjagus: state of the art ten years after. Histochem Cell Biol 123:117–130

    Article  PubMed  Google Scholar 

  28. Wu M, Majewski M, Wojtkiewicz J, Vanderwinden JM, Adriaensen D, Timmermans JP (2003) Anatomical and neurochemical features of the extrinsic and intrinsic innervation of the striated muscle in the porcine esophagus: evidence for regional and species differences. Cell Tissue Res 311:289–297

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the individuals who donated their bodies after death to Tokyo Dental College for Research and Education on human anatomy without any economic benefit. We also thank their families for agreeing to the donation as well as their patience in waiting for the return of their remains after study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Honkura.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano-Kawamoto, A., Honkura, Y., Kobayashi, Y. et al. Enteric neurons of the esophagus: an immunohistochemical study using donated elderly cadavers. Surg Radiol Anat 39, 477–484 (2017). https://doi.org/10.1007/s00276-016-1799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-016-1799-2

Keywords

Navigation