Skip to main content

Identifying Types of Neurons in the Human Colonic Enteric Nervous System

  • Conference paper
  • First Online:
The Enteric Nervous System II

Abstract

Distinguishing and characterising the different classes of neurons that make up a neural circuit has been a long-term goal for many neuroscientists. The enteric nervous system is a large but moderately simple part of the nervous system. Enteric neurons in laboratory animals have been extensively characterised morphologically, electrophysiologically, by projections and immunohistochemically. However, studies of human enteric nervous system are less advanced despite the potential availability of tissue from elective surgery (with appropriate ethics permits). Recent studies using single cell sequencing have confirmed and extended the classification of enteric neurons in mice and human, but it is not clear whether an encompassing classification has been achieved. We present preliminary data on a means to distinguish classes of myenteric neurons in specimens of human colon combining immunohistochemical, morphological, projection and size data on single cells. A method to apply multiple layers of antisera to specimens was developed, allowing up to 12 markers to be characterised in individual neurons. Applied to multi-axonal Dogiel type II neurons, this approach demonstrated that they constitute fewer than 5% of myenteric neurons, are nearly all immunoreactive for choline acetyltransferase and tachykinins. Many express the calcium-binding proteins calbindin and calretinin and they are larger than average myenteric cells. This methodology provides a complementary approach to single-cell mRNA profiling to provide a comprehensive account of the types of myenteric neurons in the human colon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng H, Sanes JR (2017) Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18(9):530–546

    Article  CAS  Google Scholar 

  2. Chen Y et al (2020) The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 92(7):833–840

    Article  CAS  Google Scholar 

  3. Knowles CH et al (2011) Quantitation of cellular components of the enteric nervous system in the normal human gastrointestinal tract--report on behalf of the Gastro 2009 International Working Group. Neurogastroenterol Motil 23(2):115–124

    Article  CAS  Google Scholar 

  4. Graham KD et al (2020) Robust, 3-dimensional visualization of human colon enteric nervous system without tissue sectioning. Gastroenterology 158(8):2221–2235.e5

    Article  CAS  Google Scholar 

  5. Liu YA et al (2012) 3-D illustration of network orientations of interstitial cells of Cajal subgroups in human colon as revealed by deep-tissue imaging with optical clearing. Am J Physiol – Gastrointest Liver Physiol 302(10):G1099–G1110

    Article  CAS  Google Scholar 

  6. Liu YA et al (2013) 3-D imaging, illustration, and quantitation of enteric glial network in transparent human colon mucosa. Neurogastroenterol Motil 25(5):e324–e338

    Article  CAS  Google Scholar 

  7. Yuste R et al (2020) A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat Neurosci 23(12):1456–1468

    Article  CAS  Google Scholar 

  8. Kim EJ et al (2020) Extraction of distinct neuronal cell types from within a genetically continuous population. Neuron 107(2):274–282.e6

    Article  CAS  Google Scholar 

  9. Cajal R (1893) Sur les ganglions et plexus nerveux de l’intestin. C R Soc Biol 5:217–223

    Google Scholar 

  10. Dogiel AS (1899) Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugethiere. Arch Anat Physiol Leipzig, Anat Abt 1899:130–158

    Google Scholar 

  11. Brehmer A (2006) Structure of enteric neurons. In: Beck FF et al (eds) 186 advances in anatomy embryology and cell biology. Springer, Berlin/Heidelberg

    Google Scholar 

  12. Brehmer A, Schrödl F, Neuhuber W (1999) Morphological classifications of enteric neurons — 100 years after Dogiel. Anat Embryol 200:125–135

    Article  CAS  Google Scholar 

  13. Brehmer A (2021) Classification of human enteric neurons. Histochem Cell Biol 25:25

    Google Scholar 

  14. Hirst GDS, Holman ME, Spence I (1974) Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J Physiol (Lond.) 236:303–326

    Article  CAS  Google Scholar 

  15. Nishi S, North RA (1973) Intracellular recording from the myenteric plexus of the guinea-pig ileum. J Physiol 231(3):471–491

    Article  CAS  Google Scholar 

  16. Brookes SJ et al (1997) Orally projecting interneurones in the guinea-pig small intestine. J Physiol 505(Pt 2):473–491

    Article  CAS  Google Scholar 

  17. Song ZM et al (1997) Characterization of myenteric interneurons with somatostatin immunoreactivity in the guinea-pig small intestine. Neuroscience 80(3):907–923

    Article  CAS  Google Scholar 

  18. Bornstein JC et al (1984) Electrophysiology and enkephalin immunoreactivity of identified myenteric plexus neurones of guinea-pig small intestine. J Physiol Lond 351:313–325

    Article  CAS  Google Scholar 

  19. Furness JB, Costa M (1980) Types of nerves in the enteric nervous system. Neuroscience 5(1):1–20

    Article  CAS  Google Scholar 

  20. Nilsson G et al (1975) Localization of substance P-like immunoreactivity in mouse gut. Histochemistry 43(1):97–99

    Article  CAS  Google Scholar 

  21. Schemann M, Camilleri M (2013) Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 144(4):698–704.e4

    Article  CAS  Google Scholar 

  22. Hokfelt T, Johansson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225(4668):1326–1334

    Article  CAS  Google Scholar 

  23. Costa M, Furness JB, Gibbins IL (1986) Chemical coding of enteric neurons. In: Hökfelt T, Changeux P (eds) Progress in brain research, vol 68. Elsevier, Amsterdam, pp 217–240

    Google Scholar 

  24. Furness JB, Morris JL, Gibbins IL, Costa M (1989b) Chemical coding of neurons and plurichemical transmission. Annu Rev Pharmacol Toxicol 29:289–306

    Article  CAS  Google Scholar 

  25. Brookes SJH (2001) Retrograde tracing of enteric neuronal pathways. Neurogastroenterol Motil 13(1):1–18

    Article  CAS  Google Scholar 

  26. Domoto T et al (1990) An in vitro study of the projections of enteric vasoactive intestinal polypeptide-immunoreactive neurons in the human colon. Gastroenterology 98(4):819–827. issn: 0016-5085

    Article  CAS  Google Scholar 

  27. Ferri GL et al (1989) Intramural distribution of immunoreactive vasoactive intestinal polypeptide (VIP), substance P, somatostatin and mammalian bombesin in the oesophago-gastro-pyloric region of the human gut. Cell-Tissue-Res 256(1):191–197. issn: 0302-766x

    Article  CAS  Google Scholar 

  28. Keast JR, Furness JB, Costa M (1984) Somatostatin in human enteric nerves. Distribution and characterization. Cell Tissue Res 237(2):299–308

    Article  CAS  Google Scholar 

  29. Porter AJ et al (2002) Cholinergic and nitrergic interneurones in the myenteric plexus of the human colon. Gut 51(1):70–75

    Article  CAS  Google Scholar 

  30. Wattchow DA, Brookes SJ, Costa M (1995) The morphology and projections of retrogradely labeled myenteric neurons in the human intestine. Gastroenterology 109(3):866–875

    Article  CAS  Google Scholar 

  31. Wattchow DA et al (1997) The polarity of neurochemically defined myenteric neurons in the human colon. Gastroenterology 113(2):497–506

    Article  CAS  Google Scholar 

  32. Brookes SJH, Costa M (2002) Cellular organisation of the mammalian enteric nervous system. In: Brookes SJH, Costa M (eds) Innervation of the gastrointestinal tract. Harwood

    Chapter  Google Scholar 

  33. Costa M et al (1996) Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75(3):949–967

    Article  CAS  Google Scholar 

  34. Schemann M, Schaaf C, Mader M (1995) Neurochemical coding of enteric neurons in the guinea pig stomach. J Comp Neurol 353(2):161–178

    Article  CAS  Google Scholar 

  35. Lomax AE, Furness JB (2000) Neurochemical classification of enteric neurons in the guinea-pig distal colon. Cell Tissue Res 302(1):59–72

    Article  CAS  Google Scholar 

  36. Qu ZD et al (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334(2):147–161

    Article  CAS  Google Scholar 

  37. Sang Q, Williamson S, Young HM (1997) Projections of chemically identified myenteric neurons of the small and large intestine of the mouse. J Anat 190(Pt 2):209–222

    Article  CAS  Google Scholar 

  38. Zeisel A et al (2018) Molecular architecture of the mouse nervous system. Cell 174(4):999–1014.e22

    Article  CAS  Google Scholar 

  39. Morarach K et al (2021) Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat Neurosci 24(1):34–46

    Article  CAS  Google Scholar 

  40. Drokhlyansky E et al (2020) The human and mouse enteric nervous system at single-cell resolution. Cell 182(6):1606–1622.e23

    Article  CAS  Google Scholar 

  41. Kiselev VY, Andrews TS, Hemberg M (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20(5):273–282

    Article  CAS  Google Scholar 

  42. Fuzik J et al (2016) Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol 34(2):175–183

    Article  CAS  Google Scholar 

  43. Brehmer A et al (2004) Immunohistochemical characterization of putative primary afferent (sensory) myenteric neurons in human small intestine. Auton Neuroscience-Basic Clin 112(1–2):49–59

    Article  CAS  Google Scholar 

  44. Weidmann S et al (2007) Quantitative estimation of putative primary afferent neurons in the myenteric plexus of human small intestine. Histochem Cell Biol 128(5):399–407

    Article  CAS  Google Scholar 

  45. Humenick A et al (2019) Characterisation of projections of longitudinal muscle motor neurons in human colon. Neurogastroenterol Motil 31(10):e13685

    Article  Google Scholar 

  46. Humenick A et al (2021) Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterol Motil 33(1):e13964

    Article  CAS  Google Scholar 

  47. Porter AJ et al (1997) The neurochemical coding and projections of circular muscle motor neurons in the human colon. Gastroenterology 113(6):1916–1923

    Article  CAS  Google Scholar 

  48. Porter AJ et al (1999) Projections of nitric oxide synthase and vasoactive intestinal polypeptide-reactive submucosal neurons in the human colon. J Gastroenterol Hepatol 14(12):1180–1187

    Article  CAS  Google Scholar 

  49. Kunze WA, Bornstein JC, Furness JB (1995) Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience 66(1):1–4

    Article  CAS  Google Scholar 

  50. Kunze WA et al (1998) Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. J Physiol 506(Pt 3):827–842

    Article  CAS  Google Scholar 

  51. Iyer V et al (1988) Electrophysiology of guinea-pig myenteric neurons correlated with immunoreactivity for calcium binding proteins. J Auton Nerv Syst 22(2):141–150

    Article  CAS  Google Scholar 

  52. Zetzmann K et al (2018) Calbindin D28k-immunoreactivity in human enteric neurons. Int J Mol Sci 19(1):08

    Article  Google Scholar 

  53. Furness JB et al (2004) Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res 317(1):1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an NIH SPARC program grant to a consortium led by Professor Yvette Tache, of UCLA #1OT2OD24899-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Brookes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brookes, S. et al. (2022). Identifying Types of Neurons in the Human Colonic Enteric Nervous System. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_23

Download citation

Publish with us

Policies and ethics