Skip to main content

Advertisement

Log in

Is the boreal spring tropical Atlantic variability a precursor of the Equatorial Mode?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Equatorial Mode (EM) governs the tropical Atlantic inter-annual variability during boreal summer. It has profound impacts on the climate of adjacent and remote areas. However, predicting the EM is one of the most challenging and intriguing issues for the scientific community. Recent studies have suggested a possible connection between the boreal spring Meridional Mode (MM) and the EM through ocean wave propagation. Here, we use a set of sensitivity experiments with a medium-resolution ocean model to determine the precursor role of a MM to create equatorial SST variability. Our results demonstrate that boreal summer equatorial SSTs following a MM, are subject to two counteracting effects: the local wind forcing and remotely-excited oceanic waves. For a positive MM, the anomalous easterly winds blowing along the equator, shallow the thermocline, cooling the sea surface via vertical diffusion and meridional advection. Anomalous wind curl excites a downwelling Rossby wave north of equator, which is reflected at the western boundary becoming an equatorial Kelvin wave (KW). This downwelling KW propagates eastward, deepening the thermocline and activating the thermocline feedbacks responsible for the equatorial warming. Moreover, the local wind forcing and RW-reflected mechanism have a significant and comparable impact on the equatorial SST variability. Changes in the intensity and persistence of these distinct forcings will determine the equatorial SST response during boreal summer. Our results give a step forward to the improvement of the EM predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amaya DJ, DeFlorio MJ, Miller AJ, Xie S-P (2016) WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons. Clim Dyn 49(5–6):1665–1679

    Google Scholar 

  • Andreoli RV, Kayano MT (2003) Evolution of the equatorial and dipole modes of the sea-surface temperature in the Tropical Atlantic at decadal scale. Meteorol Atmos Phys 83:277–285

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Brandt P, Funk A, Hormann V, Dengler M, Greatbatch RJ, Toole JM (2011) Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean. Nature 473:497

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104

    Article  Google Scholar 

  • Burmeister K, Brandt P, Lübbecke J (2016) Revisiting the cause of the eastern equatorial Atlantic cold event in 2009. J Geophys Res Oceans 121:4777–4789

    Article  Google Scholar 

  • Butterworth S (1930) On the theory of filter amplifiers. Exp Wirel Wirel Eng 7:536–541

    Google Scholar 

  • Carton JA, Huang B (1994) Warm events in the Tropical Atlantic. J Phys Oceanogr 24:888–903

    Article  Google Scholar 

  • Carton JA., Cao X, Giese BS, Da Silva AM (1996) Decadal and interannual SST variability in the tropical Atlantic Ocean. J Phys Oceanogr 26(7):1165–1175

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385(6616):516

    Article  Google Scholar 

  • Czaja A, Van der Vaart P, Marshall J (2002) A diagnostic study of the role of remote forcing in Tropical Atlantic variability. J Clim 15:3280–3290

    Article  Google Scholar 

  • Faye S, Lazar A, Sow B, Gaye A (2015) A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-eastern Tropical Upwelling System. Front Phys 3:76

    Article  Google Scholar 

  • Foltz GR, McPhaden MJ (2010a) Interaction between the Atlantic meridional and Niño modes. Geophys Res Lett 37:L18604. https://doi.org/10.1029/2010GL044001

    Google Scholar 

  • Foltz GR, McPhaden MJ (2010b) Abrupt equatorial wave-induced cooling of the Atlantic cold tongue in 2009. Geophys Res Lett. https://doi.org/10.1029/2010GL045522

    Google Scholar 

  • Foltz GR, Grodsky SA, Carton JA, McPhaden MJ (2003) Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J Geophys Res Oceans 108:3146

    Article  Google Scholar 

  • Handoh IC, Bigg GR, Matthews AJ, Stevens DP (2006) Interannual variability of the Tropical Atlantic independent of and associated with ENSO: Part II. The South Tropical Atlantic. Int J Climatol 26:1957–1976

    Article  Google Scholar 

  • Huang B, Shukla J (1997) Characteristics of the interannual and decadal variability in a general circulation model of the Tropical Atlantic Ocean. J Phys Oceanogr 27:1693–1712

    Article  Google Scholar 

  • Illig S et al (2004) Interannual long equatorial waves in the tropical Atlantic from a high-resolution ocean general circulation model experiment in 1981–2000. J Geophys Res Oceans. https://doi.org/10.1029/2003JC001771

    Google Scholar 

  • Jin D, Huo L (2018) Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon. Q J R Meteorol Soc 144:1490–1500

    Article  Google Scholar 

  • Jouanno J, Hernandez O, Sanchez-Gomez E (2017) Equatorial Atlantic interannual variability and its relation to dynamic and thermodynamic processes. Earth Syst Dyn 8:1061–1069

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Tompkins AM, Feudale L, Ruti P, Dell’Aquila A (2009) A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Q J R Meteorol Soc 135:569–579

    Article  Google Scholar 

  • Latif M, Grötzner A (2000) The equatorial Atlantic oscillation and its response to ENSO. Clim Dyn 16:213–218

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Kucharski F (2012a) Tropical influence on the summer Mediterranean climate. Atmos Sci Lett 13:36–42

    Article  Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012b) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:L12705

    Article  Google Scholar 

  • Lübbecke J, McPhaden MJ (2012) On the inconsistent relationship between Pacific and Atlantic Niños. J Clim 25:4294–4303

    Article  Google Scholar 

  • Lübbecke JF, McPhaden MJ (2013) A comparative stability analysis of Atlantic and Pacific Niño modes. J Clim 26:5965–5980

    Article  Google Scholar 

  • Lübbecke J, Böning CW, Keenlyside NS, Xie S-P (2010) On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic anticyclone. J Geophys Res Oceans 115:C09015

    Article  Google Scholar 

  • Lübbecke J, Rodríguez-Fonseca B, Richter I, Martín-Rey M, Losada T, Polo I, Keenlyside N (2018) Equatorial Atlantic variability—modes, mechanisms and global teleconnections. WIREs Clim Change 9(4):e527. https://doi.org/10.1002/wcc.527

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine, Note du Pole de modèlisation

  • Martín-Rey M, Rodríguez-Fonseca B, Polo I, Kucharski F (2014) On the Atlantic-Pacific Niños connection: a multidecadal modulated mode. Clim Dyn 43:3163–3178

    Article  Google Scholar 

  • Martín-Rey M, Rodríguez-Fonseca B, Polo I (2015) Atlantic opportunities for ENSO prediction. Geophys Res Lett 42:6802–6810

    Article  Google Scholar 

  • Martín-Rey M, Polo I, Rodríguez-Fonseca B, Lazar A, Losada T (2019) Ocean dynamics shapes the structure and timing of tropical Atlantic variability modes. Geophys Res Lett (under review)

  • Mohino E, Losada T (2015) Impacts of the Atlantic equatorial mode in a warmer climate. Clim Dyn 45:2255–2271

    Article  Google Scholar 

  • Murtugudde RG, Ballabrera-Poy J, Beauchamp J, Busalacchi AJ (2001) Relationship between zonal and meridional modes in the tropical Atlantic. Geophys Res Lett 28:4463–4466

    Article  Google Scholar 

  • Nnamchi H, Li J, Kucharski F, Kang I-S, Keenlyside NS, Chang P, Farneti R (2015) Thermodynamic controls of the Atlantic Niño. Nat Commun 6:8895

    Article  Google Scholar 

  • Nnamchi HC, Li J, Kucharski F, Kang IS, Keenlyside NS, Chang P, Farneti R (2016) An equatorial-extratropical dipole structure of the Atlantic Niño. J Clim 29:7295–7311

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations in sea surface temperatura, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Peter A-C et al (2006) A model study of the seasonal mixed layer heat budget in the equatorial Atlantic. J Geophys Res Oceans 111:C06014

    Google Scholar 

  • Polo I, Rodríguez-Fonseca B, Losada T, García-Serrano J (2008a) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African rainfall. J Clim 21:6457–6475

    Article  Google Scholar 

  • Polo I, Lazar A, Rodriguez-Fonseca B, Arnault S (2008b) Oceanic Kelvin waves and tropical Atlantic intraseasonal variability: 1. Kelvin wave characterization. J Geophys Res Oceans 113:07009

    Article  Google Scholar 

  • Polo I, Lazar A, Rodriguez-Fonseca B, Mignot J (2015a) Growth and decay of the equatorial Atlantic SST mode by means of closed heat budget in a coupled general circulation model. Front Earth Sci 3:37

    Article  Google Scholar 

  • Polo I, Martín-Rey M, Rodriguez-Fonseca B, Kucharski F, Mechoso C (2015b) Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim Dyn 44:115–131

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407

    Article  Google Scholar 

  • Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T (2013) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6:43–47

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705

    Article  Google Scholar 

  • Rodríguez-Fonseca B et al (2015) Variability and predictability of West African droughts: a review on the role of sea surface temperature anomalies. J Clim 28:4034–4060

    Article  Google Scholar 

  • Ruiz-Barradas A, Carton JA, Nigam S (2000) Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J Clim 13:3285–3297

    Article  Google Scholar 

  • Servain J, Wainer I, McCreary JP, Dessier A (1999) Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys Res Lett 26:485–488

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • von Storch H, Zwiers F (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 484

    Google Scholar 

  • Wagner RG (1996) Mechanisms controlling variability of the interhemispheric sea surface temperature gradient in the tropical Atlantic. J Clim 9(9):2010–2019

    Article  Google Scholar 

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic Region. J Clim 6:1567–1586

    Article  Google Scholar 

  • Zhu J, Huang B, Wu Z (2012) The role of ocean dynamics in the interaction between the Atlantic meridional and equatorial modes. J Clim 25:3583–3598

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the EU FP7/2007-2013 under Grant Agreement 603521 (PREFACE project), the MORDICUS grant under contract ANR-13-SENV-0002-01, CNES/EUMETSAT (CNES—DIA/TEC-2016.8595, EUM/LEO-JAS3/DOC/16/852054) and the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236). The observed SSTs from HadISST dataset were provided by the MetOffice Hadley Centre, from its website at https://www.metoffice.gov.uk/hadobs/hadisst/. The data from the INTER, MM-REF, MM-WIND and MM-WAVE simulations are available from the authors upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Martín-Rey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Rey, M., Lazar, A. Is the boreal spring tropical Atlantic variability a precursor of the Equatorial Mode?. Clim Dyn 53, 2339–2353 (2019). https://doi.org/10.1007/s00382-019-04851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04851-9

Keywords

Navigation