Skip to main content
Log in

On the Atlantic–Pacific Niños connection: a multidecadal modulated mode

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Atlantic and Pacific El Niño are the leading tropical oceanic variability phenomena at interannual timescales. Recent studies have demonstrated how the Atlantic Niño is able to influence on the dynamical processes triggering the development of the Pacific La Niña and vice versa. However, the stationarity of this interbasin connection is still controversial. Here we show for the first time that the Atlantic–Pacific Niños connection takes place at particular decades, coinciding with negative phases of the Atlantic Multidecadal Oscillation (AMO). During these decades, the Atlantic–Pacific connection appears as the leading coupled covariability mode between Tropical Atlantic and Pacific interannual variability. The mode is defined by a predictor field, the summer Atlantic Sea Surface Temperature (SST), and a set of predictand fields which represent a chain of atmospheric and oceanic mechanisms to generate the Pacific El Niño phenomenon: alteration of the Walker circulation, surface winds in western Pacific, oceanic Kelvin wave propagating eastward and impacting on the eastern thermocline and changes in the Pacific SST by internal Bjerknes feedback. We suggest that the multidecadal component of the Atlantic acts as a switch for El Niño prediction during certain decades, putting forward the AMO as the modulator, acting through changes in the equatorial Atlantic convection and the equatorial Pacific SST variability. These results could have a major relevance for the decadal prediction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An SI, Jin FF (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432

    Article  Google Scholar 

  • Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319

    Article  Google Scholar 

  • Bjerknes J (1964) Atlantic air-sea interaction. Adv Geophys 10:10–82

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40(8):1605–1611. doi:10.1002/grl.50229

    Article  Google Scholar 

  • Boyer TP et al (2009) WorldOcean database 2009. In: Levitus S (ed) NOAA Atlas NESDIS, 66, US Govt Print Off, Washington, DC, p 216

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Chang P (1994) A study of the seasonal cycle of sea surface temperature in the tropical Pacific Ocean using reduced gravity models. J Geophys Res 99:7725–7741

    Article  Google Scholar 

  • Cherry S (1997) Some comments on singular value decomposition analysis. J Clim 10:1759–1761

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190. doi:10.1175/BAMS-87-2-175

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD (2008) The 20th century reanalysis project, paper presented at 3rd WCRP international conference on reanalysis. University of Tokyo, Tokyo, 28 Jan to 1 Feb

  • Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Davey MK et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420

    Article  Google Scholar 

  • Dayan H, Vialard J, Izumo T, Lengaigne M (2013) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn. doi:10.1007/s00382-013-1946-y

    Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16(9):661–676

    Article  Google Scholar 

  • Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Marine Sci 2:115–143

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the Equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn 38(9–10):1965–1972. doi:10.1007/s00382-011-1097-y

    Article  Google Scholar 

  • Dong B, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J Clim 20(19):4920–4939

    Article  Google Scholar 

  • Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Nino-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33(8):L08705. doi:10.1029/2006GL025766

    Article  Google Scholar 

  • Fang Y, Chiang JC, Chang P (2008) Variation of mean sea surface temperature and modulation of El Niño-Southern Oscillation variance during the past 150 years. Geophys Res Lett 35(14):L14709. doi:10.1029/2008GL033761

    Article  Google Scholar 

  • Federov A, Philander SG (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706

    Article  Google Scholar 

  • García-Serrano J, Losada T, Rodríguez-Fonseca B, Polo I (2008) Tropical Atlantic variability modes (1979–2002). Part II: time-evolving atmospheric circulation related to SST-forced tropical convection. J Clim 21:6476–6497

    Article  Google Scholar 

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys R Oceans (1978–2012) 116:C2

  • Gill A (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteor Soc 106:447–462

    Article  Google Scholar 

  • Haarsma RJ, Campos E, Hazeleger W, Severijns C (2008) Influence of the meridional overturning circulation on tropical Atlantic climate and variability. J Clim 21:1403–1416

    Article  Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116

    Article  Google Scholar 

  • Handoh IC, Matthews AJ, Bigg GR, Stevens DP (2006a) Interannual variability of the tropical Atlantic independent of and associated with ENSO: part I. The North Tropical Atlantic. Int J Clim 26(14):1937–1956

    Article  Google Scholar 

  • Handoh IC, Bigg GR, Matthews AJ, Stevens DP (2006b) Interannual variability of the Tropical Atlantic independent of and associated with ENSO: part II. The South Tropical Atlantic. Int J Clim 26(14):1957–1976

    Article  Google Scholar 

  • Hong S, Kang IS, Choi I, Ham YG (2013) Climate responses in the tropical Pacific associated with Atlantic warming in recent decades. Asia–Pacific J Atmos Sci 49(2):209–217

    Article  Google Scholar 

  • Huang B, Schopf PS, Pan Z (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29(21):35-1

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, Montegut CDB, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole of the following year’s El Niño. Nature 3:168–172

    Google Scholar 

  • Joly M, Voldoire A (2010) Role of the Gulf of Guinea in the inter-annual variability of the West African monsoon: what do we learn from CMIP3 coupled simulations? Int J Clim 30(12):1843–1856

    Google Scholar 

  • Kaplan A, Kushnir Y, Cane MA, Blumenthal MB (1997) Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J Geophys Res Oceans (1978–2012), 102(C13): 27835–27860

  • Kayano MT, Andreoli RV, Ferreira de Souza RA (2011) Evolving anomalous SST patterns leading to ENSO extremes: relations between the tropical Pacific and Atlantic Oceans and the influence on the South American rainfall. Int J Clim 31(8):1119–1134

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20(1):131–142

    Article  Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40(10):2278–2283

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33(17):L17706. doi:10.1029/2006GL026242

  • Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706

    Article  Google Scholar 

  • Kucharski F, Kang IS, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38(3):L03702. doi:10.1029/2010GL046248

  • Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19(9):1784–1801

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim Dyn 5:45–52

    Article  Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:12

    Article  Google Scholar 

  • Luo JJ, Zhang R, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean Dipole. J Clim 23:726–742

    Article  Google Scholar 

  • Martín-Rey M, Polo I, Rodríguez-Fonseca B, Kucharski F (2012) Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Sci Mar 76, S1. doi:10.3989/scimar.03610.19A

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Japan 44:24–42

    Google Scholar 

  • Mohino E, Rodríguez-Fonseca B, Losada T, Gervois S, Janicot S, Bader J, Ruti P, Chauvin F (2011) Changes in the interannual SST-forced signals on West African rainfall. AGCM intercomparison. Clim Dyn 37(9–10):1707–1725

    Article  Google Scholar 

  • Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parametrizations. I. Model climatology and variability in multi-decadal experiments. Clim Dyn 20:175–191

    Google Scholar 

  • Münnich M, Neelin JD (2005) Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys Res Lett 32:L21709

    Article  Google Scholar 

  • Philander SG (1990) El Niño, La Niña, and the Southern Oscillation, Academic Press, San Diego. 46. ISBN 0125532350

  • Polo I, De Fonseca BR, Sheinbaum J (2005) Northwest Africa upwelling and the Atlantic climate variability. Geophys Res Lett 32(23):L23702

    Article  Google Scholar 

  • Polo I, Rodríguez-Fonseca B, Losada T, García-Serrano J (2008) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African rainfall. J Clim 21:6457–6475

    Article  Google Scholar 

  • Polo I, Dong BW, Sutton RT (2013) Changes in tropical Atlantic interannual variability from a substantial weakening of the meridional overturning circulation. Clim Dyn 41(9–10):2765–2784

  • Polo I, Martín-Rey M, Rodríguez-Fonseca B, Kucharski F, Mechoso CR (2014) Processes in the Pacific La Niña onset triggered by the Atlantic Niño, Clim Dyn (under revision)

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Globally complete analyses of sea surface temperature, sea ice and night marine air temperature, 1871–2000. J Geophys Res 108:4407

    Article  Google Scholar 

  • Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598

    Article  Google Scholar 

  • Richter I, Xie SP, Behera SK, Doi T, Masumoto Y (2012) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42(1–2):171–188

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705

    Article  Google Scholar 

  • Rodríguez-Fonseca B et al (2011) Interannual and decadal SST-forced responses of the West African monsoon. Atmos Sci Lett 12(1):67–74

    Article  Google Scholar 

  • Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño-Southern oscillation. J Clim 13:2177–2194

    Article  Google Scholar 

  • Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic oscillation a random walk? Int J Clim 20:1–18

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 5(45):3283–3287

    Article  Google Scholar 

  • Sutton RT, Jewson SP, Rowell DP (2000) The elements of climate variability in the tropical Atlantic region. J Clim 13(18):3261–3284

    Article  Google Scholar 

  • Svendsen L, Gunnar N, Keenlyside N (2013) Weakening AMOC connects Equatorial Atlantic and Pacific variability. Clim Dyn. doi:10.1007/s00382-013-1904-8

    Google Scholar 

  • Terray P (2011) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn 36(11–12):2171–2199

    Article  Google Scholar 

  • Terray P, Dominiak S (2005) Indian Ocean Sea Surface Temperature and El Niño–Southern Oscillation: A New Perspective. J Clim 18(9):1351–1368

  • Timmermann A et al (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20(19):4899–4919

    Article  Google Scholar 

  • Toniazzo T, Woolnough S (2013) Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim Dyn 1–25. doi:10.1007/s00382-013-1691-2

  • Villamayor J, Mohino E (2012) Variabilidad de la baja frecuencia de la precipitación de Sahel y su relación con la variabilidad multidecadal de las temperaturas de la superficie del mar en las simulaciones de CMIP5. Master Thesis, Universidad Complutense de Madrid

  • Voldoire A, Claudon M, Caniaux G, Giordani H, Roehrig R (2014) Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? Clim Dyn 1–22. doi:10.1007/s00382-013-2036-x

  • Wahl S, Latif M, Park W, Keenlyside N (2011) On the tropical Atlantic SST warm bias in the Kiel Climate Model. Clim Dyn 36(5–6):891–906

    Article  Google Scholar 

  • Wang C, Lee SK, Mechoso CR (2010) Interhemispheric Influence of the Atlantic Warm Pool on the Southeastern Pacific. J Clim 23(2):404–418

    Article  Google Scholar 

  • Whitaker JS, Compo GP, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Wea Rev 132:1190–1200

    Article  Google Scholar 

  • Woodruff SD et al (2011) ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Clim 31(7):951–967

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño-the dynamic response of the Equatorial Pacific Ocean to Atmospheric Forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the European project PREFACE (ref.603521) the Spanish MINNECO projects CGL2009-10295, CGL2011-13564-E and CGL2012-38923-C02-01 and for the Spanish Public Employment Service (SEPE). The authors want to thank the editor for his help during the whole process of submission and also the useful and constructive comments of the two anonymous referees, which have been considerably improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Martín-Rey.

Additional information

This paper is a contribution to the special issue on tropical Atlantic variability and coupled model climate biases that have been the focus of the recently completed Tropical Atlantic Climate Experiment (TACE), an international CLIVAR program (http://www.clivar.org/organization/atlantic/tace). This special issue is coordinated by William Johns, Peter Brandt, and Ping Chang, representatives of the TACE Observations and TACE Modeling and Synthesis working groups.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Rey, M., Rodríguez-Fonseca, B., Polo, I. et al. On the Atlantic–Pacific Niños connection: a multidecadal modulated mode. Clim Dyn 43, 3163–3178 (2014). https://doi.org/10.1007/s00382-014-2305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2305-3

Keywords

Navigation