Skip to main content

Advertisement

Log in

Processes in the Pacific La Niña onset triggered by the Atlantic Niño

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Previous observational and model studies have shown that a warm (cold) event in the equatorial Atlantic during the boreal summer are related to the development of a Pacific La Niña (El Niño) event, that is fully developed in the following winter. Although the connection takes place via atmospheric bridge, the processes at work have not been clarified for such a remote and lagged relationship. The present paper uses a partially coupled atmosphere–ocean model to infer a mechanism by which a Pacific El Niño event can be developed. In this way, enhanced equatorial convection in the equatorial Atlantic during a warm event results in enhanced subsidence and surface wind divergence over the equatorial Pacific around the dateline. This wind anomaly contributes to pile up water in the western equatorial Pacific, triggering a perturbation in the depth of the oceanic thermocline, which propagates eastward as an equatorial Kelvin wave from autumn to winter. The thermocline shallowing as the wave propagates allows for cooling of the oceanic mixed layer through anomalous temperature advection by anomalous zonal currents and by mean vertical entrainment velocity. Zonal advective and thermocline feedbacks reinforce the surface winds anomalies over the central eastern equatorial Pacific setting up the conditions for the development of a cold event in this ocean. The sequence during an Atlantic cold event is similar with the appropriate change in signs. These findings are relevant to ENSO predictability at seasonal timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An SI (2009) A review of interdecadal changes in the nonlinearity of the El Niño–southern oscillation. Theor Appl Climatol 97:29–40. doi:10.1007/s00704-008-0071-z

    Article  Google Scholar 

  • An SI, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • An SI, Jin FF, Kang IS (1999) The role of zonal advection feedback in phase transition and growth of ENSO in the Cane–Zebiak model. J Meteor Soc Jpn 77:1151–1160

    Google Scholar 

  • Anderson DLT, McCreary JP (1985) Slowly propagating disturbances in a coupled ocean–atmosphere model. J Atmos Sci 42:615–628

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Barnett TP, Latif M, Kirk E, Roeckner E (1991) On ENSO physics. J Clim 5:487–515

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172. doi:10.1175/1m520

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1605–1611

    Article  Google Scholar 

  • Cane MA, Zebiak SE (1985) A theory for El Niño and the southern oscillation. Science 228(4703):1085–1087. doi:10.1126/science.228.4703.1085

    Article  Google Scholar 

  • Cane MA, Clement AC, Kaplan A, Kushnir Y, Pozdnyakov D, Seager R, Zebiak SE, Murtugudde R (1997) Twentieth-century sea surface temperature trends. Science 275(5302):957–960. doi:10.1126/science.275.5302.957

    Article  Google Scholar 

  • Chang P (1994) A study of the seasonal cycle of sea surface temperature in the tropical Pacific Ocean using reduced gravity models. J Geophys Res 99:7725–7741

    Article  Google Scholar 

  • Chang P, Fang Y, Saravannan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature 443:324–328. doi:10.1038/nature05053

    Article  Google Scholar 

  • Chelton DB, Schlax MG (1996) Global observations of oceanic Rossby waves. Science 272:234–238

    Article  Google Scholar 

  • Chiang JCH, Kushnir Y, Zebiak SE (2000) Interdecadal changes in the eastern Pacific ITCZ variability and its influence on the Atlantic ICTZ. Geophys Res Lett 27:3687–3690

    Article  Google Scholar 

  • Dayan H, Vialard J, Izumo T, Lengaigne M (2013) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn. doi:10.1007/s00382-013-1946-y

  • Dewitte B, Thual S, Yeh SW, An SI, Moon BK, Giese BS (2009) Low-frequency variability of temperature in the vicinity of the equatorial pacific thermocline in SODA: role of equatorial wave dynamics and ENSO asymmetry. J Clim. doi:10.1175/2009JCLI2764.1

    Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Niño southern oscillation. Clim Dyn. doi:10.1007/s00382-011-1097-y

  • Federov A, Philander SG (2000) Is el Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi:10.1029/2011GL050520

    Article  Google Scholar 

  • Galanti E, Tziperman E (2000) ENSO’s phase locking to the seasonal cycle in the fast-SST, fast-wave, and mixed-mode regimes. J Atmos Sci 57:2936–2950

    Article  Google Scholar 

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res Oceans (1978–2012) 116. doi:10.1029/2010JC006695

  • Gu D, Philander SGH (1995) Secular changes of annual and interannual variability in the Tropics during the past century. J Clim 8:864–876

    Article  Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013a) Sea surface temperature in the north tropical Atlantic as a trigger for El Nino/southern oscillation events. Nat Geosci. doi:10.1038/NGEO1686

    Google Scholar 

  • Ham YG, Kug JS, Park JY (2013b) Two distinct roles of Atlantic SSTs in ENSO variability: north tropical Atlantic SST and Atlantic Niño. Geo Res Lett 40:4012–4017

    Article  Google Scholar 

  • Heng X, Mechoso CR (2009a) Correlative evolutions of ENSO and the Seasonal cycle in the tropical Pacific Ocean. J Atmos Sci 66:1041–1049

    Article  Google Scholar 

  • Heng X, Mechoso CR (2009b) Seasonal Cycle—El Niño relationship: validation of hypotheses. J Atmos Sci 66:1633–1653

    Article  Google Scholar 

  • Huang B, Xue Y, Wang H, Wang W, Kumar A (2011) Mixed layer heat budget of the El Niño in NCEP climate forecast system. Clim Dyn. doi:10.1007/s00382-011-1111-4

  • Izumo T, Vilard J, Lengaigne M, Montegut CDB, Behera SK, Luo J-J, Cravatte S, Masson S, Yamagata Y (2010) Influence of the state of the Indian Ocean dipole of the following year’s El Niño. Nat Geosci 3:168–172. doi:10.1038/ngeo760

    Article  Google Scholar 

  • Izumo T, Lengaigne M, Vialard J, Luo JJ, Yamagata T, Madec G (2014) Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim Dyn 42:291–310

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere-ocean interactions in a conceptual framework. J Clim 22:550–567. doi:10.1175/2008JCLI2243.1

    Article  Google Scholar 

  • Jin FF (1997a) An equatorial recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin FF (1997b) An equatorial recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Jin F-F, Neelin JD (1993) Modes of interannual tropical ocean–atmosphere interaction -a unified view. Part I: numerical results. J Atmos Sci 50:3477–3503

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 30:131–142

    Article  Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial atlantic varaibility to enhance El Nino prediction. Geophys Res Lett 40:2278–2283

    Article  Google Scholar 

  • Kessler WS, McPhaden MJ, Weickmann KM (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100:10613–10632. doi:10.1029/95JC00382

    Article  Google Scholar 

  • Kleeman R, McAvaney BJ, Balgovind RC (1994) Analysis of the interannual heat flux response in an atmospheric general circulation model in the tropical Pacific. J Geophys Res 99:5539–5550

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33(17):L17706

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: the ‘‘weakening’’ of the 1980s and 1990s. J Clim 20:4255–4266. doi:10.1175/JCLI4254.1

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706. doi:10.1029/2007GL033037

    Article  Google Scholar 

  • Kucharski F, Molteni F, King MP, Farneti R, Kang I-S, Feudale L (2013) On the need of intermediate complexity general circulation models. BAMS 94:25–30. doi:10.1175/BAMS-D-11-00238.1

    Article  Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Janicot S, Gervois S, Chauvin F, Ruti P (2009) A multimodel approach to the Atlantic equatorial mode. Impact on the West African monsoon. Clim Dyn 35:29–43. doi:10.1007/s00382-009-0625-5

    Article  Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic equatorial mode: AGCM multimodel approach. Clim Dyn 5:45–52. doi:10.1007/s00382-009-0624-6

    Article  Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:L12705. doi:10.1029/2012GL052423

    Article  Google Scholar 

  • Luo J-J, Zhang R, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Nino and extreme Indian ocean dipole. J Clim 23:726–742

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Levy C (1998) OPA 8.1 general circulation model reference manual. Notes du pole de modelisation IPSL, University P. et M. Curie, B102 T15- E5, No. 11, Paris

  • Martín-Rey M, Polo I, Rodriguez-Fonseca B, Kucharski F (2012) Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Sci Mar 76:S1. doi:10.3989/scimar.03610.19A

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteo Soc Jpn 44:25–43

    Google Scholar 

  • McPhaden JM, Zhang X, Hendon HH, Wheeler MC (2006) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33:L16702. doi:10.1029/2006GL026786

    Article  Google Scholar 

  • Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman B, Latif M, Le Treut H, Nagai T, Neelin JD, Philander SGH, Polcher J, Schopf PS, Stockdale T, Suarez MJ, Terray L, Thual O, Tribbia JJ (1995) The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon Weather Rev 123:2825–2838

    Article  Google Scholar 

  • Mechoso C, Neelin J, Yu J-Y (2003) Testing simple models of ENSO. J Atmos Sci 60:305–318

    Article  Google Scholar 

  • Mo KC, Häkkinen S (2000) Interannual variability in the tropical Atlantic and linkages to the Pacific. J Clim 14:2720–2762

    Google Scholar 

  • Moon BK, Yeh SW, Dewitte B, Jhun JG, Kang IS, Kirtman BP (2004) Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophys Res Lett 31. doi:10.1029/2003GL018829

  • Münnich M, Neelin JD (2005) Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys Res Lett 32:L21709. doi:10.1029/2005GL023900

    Article  Google Scholar 

  • Philander SG (1990) El Niño, La Niña, and the southern oscillation. Academic Press, San Diego. Ix. ISBN 0125532350

  • Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666

    Article  Google Scholar 

  • Polo I, Rodríguez-Fonseca B, Losada T, García-Serrano J (2008a) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African rainfall. J Clim 21:6457–6475. doi:10.1175/2008JCLI2607.1

    Article  Google Scholar 

  • Polo I, Lazar A, Rodriguez-Fonseca B, Arnault S (2008b) Oceanic Kelvin waves and tropical Atlantic intraseasonal variability: 1. Kelvin wave characterization. J Geophys Res 113:C07009. doi:10.1029/2007JC0044951

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Globally complete analyses of sea surface temperature, sea ice and night marine air temperature, 1871–2000. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niñosenhacing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi:10.1029/2009GL040048

    Article  Google Scholar 

  • Ruiz-Barradas A, Carton JA, Nigam S (2000) Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J Clim 13:3285–3297

    Article  Google Scholar 

  • Sheinbaum J (2003) Current theories on El Niño–southern oscillation: a review. GeofísicaInternacional 42(3):291–305

    Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (1987) On the evolution of the southern oscillation. Mon Weather Rev 115:3078–3096

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • Wang C (2006) An overlooked feature of tropical climate: inter-Pacific–Atlantic variability. Geophys Res Lett 33:L12702. doi:10.1029/2006GL026324

    Article  Google Scholar 

  • Wang W, McPhaden MJ (2001) The surface-layer heat balance in the equatorial Pacific Ocean. Part II: interannual variability. J Phys Oceanogr 30:2989–3008

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Oceanto atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Wyrtki K (1986) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 91:7129–7132

    Google Scholar 

  • Yu J-Y, Mechoso CR, McWilliams JC, Arakawa A (2002) Impacts of the Indian Ocean on the ENSO cycle. Geophys Res Lett 29:46-1–46-4

    Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. WHOI technical report (OA-2008-01). http://oaflux.whoi.edu/

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño–southern oscillation. Mon Weather Rev 115:2262–2278. doi:10.1175/15200493(1987)

    Article  Google Scholar 

Download references

Acknowledgments

Irene Polo has been supported by a postdoctoral fellowship funded by the Spanish Government. This work has been also possible thanks to the Spanish Projects: Tropical Atlantic Variability and the Climate Shift (TRACS-CGL2009-10285), MOVAC and MULCLIVAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Polo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polo, I., Martin-Rey, M., Rodriguez-Fonseca, B. et al. Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim Dyn 44, 115–131 (2015). https://doi.org/10.1007/s00382-014-2354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2354-7

Keywords

Navigation