Skip to main content

Advertisement

Log in

How well do CMIP5 models simulate the low-level jet in western Colombia?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Choco jet is an important atmospheric feature of Colombian and northern South America hydro-climatology. This work assesses the ability of 26 coupled and 11 uncoupled (AMIP) global climate models (GCMs) included in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) archive to simulate the climatological basic features (annual cycle, spatial distribution and vertical structure) of this jet. Using factor and cluster analysis, we objectively classify models in Best, Worst, and Intermediate groups. Despite the coarse resolution of the GCMs, this study demonstrates that nearly all models can represent the existence of the Choco low-level jet. AMIP and Best models present a more realistic simulation of jet. Worst models exhibit biases such as an anomalous southward location of the Choco jet during the whole year and a shallower jet. The model skill to represent this jet comes from their ability to reproduce some of its main causes, such as the temperature and pressure differences between particular regions in the eastern Pacific and western Colombian lands, which are non-local features. Conversely, Worst models considerably underestimate temperature and pressure differences between these key regions. We identify a close relationship between the location of the Choco jet and the Inter-tropical Convergence Zone (ITCZ), and CMIP5 models are able to represent such relationship. Errors in Worst models are related with bias in the location of the ITCZ over the eastern tropical Pacific Ocean, as well as the representation of the topography and the horizontal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam O, Bischoff T, Schneider T (2015) Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: zonally averaged ITCZ position. J Clim 29(9):3219–3230

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M

  • Ambrizzi T, de Souza EB, Pulwarty RS (2004) The Hadley and Walker regional circulations and associated ENSO impacts on South American seasonal rainfall. In: Diaz J, Bradley RS (eds) The Hadley circulation: present, past and future, Kluwer Academic Publishers, Dordrecht, pp 203–235

    Chapter  Google Scholar 

  • Arias PA, Martínez JA, Vieira SC (2015) Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim Dyn 45(9–10):2861–2884. https://doi.org/10.1007/s00382-015-2511-7

    Article  Google Scholar 

  • Arora VK, Scinocca JF, Boer GJ et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):L05805. https://doi.org/10.1029/2010GL046270

    Article  Google Scholar 

  • Bischoff T, Schneider T (2015) The equatorial energy balance, ITCZ position, and double ITCZ bifurcations. J Clim 29(8):2997–3013

    Article  Google Scholar 

  • Bishara AJ, Hittner JB (2012) Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol Methods 17(3):399

    Article  Google Scholar 

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33(1):L05805. https://doi.org/10.1029/2010GL046270

    Article  Google Scholar 

  • Cannon AJ (2015) Selecting GCM scenarios that span the range of changes in a multimodel ensemble: application to CMIP5 climate extremes indices. J Clim 28(3):1260–1267

    Article  Google Scholar 

  • Colas F, McWilliams JC, Capet X, Kurian J (2012) Heat balance and eddies in the Peru–Chile current system. Clim Dyn 39(1–2):509–529

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519

    Article  Google Scholar 

  • Donohoe A, Marshall J, Ferreira D, Mcgee D (2013) The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the last glacial maximum. J Clim 26(11):3597–3618

    Article  Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S et al (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10(9):2147–2153

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B et al. (2013) Evaluation of climate models. Climate change 2013 The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 741–866

  • Garreaud R, Vuille M, Compagnucci R, Marengo J (2009) Presentday South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991

    Article  Google Scholar 

  • Gordon CT, Rosati A, Gudgel R (2000) Tropical sensitivity of a coupled model to specified ISCCP low clouds. J Clim 13(13):2239–2260

    Article  Google Scholar 

  • Gulizia C, Camilloni I (2015) Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int J Climatol 35(4):583–595

    Article  Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2014) Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I. upgrades and intercomparisons. J Clim 28(3):911–930

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010) The TRMM multi-satellite precipitation analysis (TMPA). In: Gebremichael M, Hossain F (eds) Satellite rainfall applications for surface hydrology. Springer Netherlands, Dordrecht, pp 3–22

    Chapter  Google Scholar 

  • Hurrell JW, Holland MM, Gent PR et al (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94(9):1339–1360

    Article  Google Scholar 

  • Hwang YT, Frierson DM (2013) Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc Natl Acad Sci 110(13):4935–4940

    Article  Google Scholar 

  • Insel N, Poulsen C, Elhers T (2010) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35:1477–1492

    Article  Google Scholar 

  • Jiang X, Lau NC, Held IM, Ploshay JJ (2007) Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J Atmos Sci 64(2):532–547

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. https://doi.org/10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Kim D, Sobel AH, Del Genio AD et al (2012) The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim 25(13):4641–4659

    Article  Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40(6):1194–1199

    Article  Google Scholar 

  • Li G, Xie SP (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial pacific cold tongue and double ITCZ problems*. J Clim 27(4):1765–1780

    Article  Google Scholar 

  • Li L, Lin P, Yu Y, e al (2013) The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv Atmos Sci 30:543–560

    Article  Google Scholar 

  • Lorenz C, Kunstmann H (2012) The hydrological cycle in three state-of-the-art reanalyses: intercomparison and performance analysis. J Hydrometeorol 13(5):1397–1420

    Article  Google Scholar 

  • Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18(13):2344–2360

    Article  Google Scholar 

  • Ma CC, Mechoso CR, Robertson AW, Arakawa A (1996) Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean–atmosphere GCM study. J Clim 9(7):1635–1645

    Article  Google Scholar 

  • Mapes BE, Warner TT, Xu M, Negri AJ (2003) Diurnal patterns of rainfall in northwestern South America. Part I: observations and context. Mon Weather Rev 131(5):799–812

    Article  Google Scholar 

  • Martin ER, Schumacher C (2011) The Caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. J Clim 24(22):5935–5950

    Article  Google Scholar 

  • Martínez I, Keigwin L, Barrows TT, Yokoyama Y, Southon J (2003) La Niña-like conditions in the eastern equatorial Pacific and a stronger Choco jet in the northern Andes during the last glaciation. Paleoceanogr 18(2):1033. https://doi.org/10.1029/2002PA000877

    Article  Google Scholar 

  • Oueslati B, Bellon G (2015) The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and precipitation. Clim Dyn 44(3–4):585–607

    Article  Google Scholar 

  • Palomino-Lemus R, Córdoba-Machado S, Gámiz-Fortis SR, Castro-Díez Y, Esteban-Parra MJ (2014) Validation of tropical Pacific SLP patterns in CMIP5 models. In: Fernández-Montes S, Rodrigo FS (eds) Cambio Climático y Cambio Global, vol 9 Asociación Española de Climatología, (AEC) Serie A, p 853

  • Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): enhanced ocean–atmosphere–land interaction by a low level jet. Geophys Res Lett 27:1675–1678

    Article  Google Scholar 

  • Poveda G, Jaramillo A, Gil MM, Quiceno N, Mantilla RI (2001) Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour Res 37(8):2169–2178

    Article  Google Scholar 

  • Poveda G, Álvarez DM, Rueda ÓA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36(11–12):2233–2249

    Article  Google Scholar 

  • Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50(1):98–118

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384

    Article  Google Scholar 

  • Rencher AC (2003) Methods of multivariate analysis, vol 492. Wiley, New Jersey

    Google Scholar 

  • Russell JM, Johnson TC (2007) Little Ice Age drought in equatorial Africa: intertropical convergence zone migrations and El Niño–Southern Oscillation variability. Geology 35(1):21–24

    Article  Google Scholar 

  • Ryu JH, Hayhoe K (2014) Understanding the sources of Caribbean precipitation biases in CMIP3 and CMIP5 simulations. Clim Dyn 42(11–12):3233–3252

    Article  Google Scholar 

  • Sakamoto MS, Ambrizzi T, Poveda G (2011) Moisture sources and life cycle of convective systems over Western Colombia. Adv Meteorol 2011:890759. https://doi.org/10.1155/2011/890759

    Article  Google Scholar 

  • Sakamoto TT, Komuro Y, Nishimura T et al (2012) MIROC4h—a new high-resolution atmosphere-ocean coupled general circulation model. 90(3):325–359

  • Sanderson BM, Knutti R, Caldwell P (2015) Addressing interdependency in a multimodel ensemble by interpolation of model properties. J Clim 28(13):5150–5170

    Article  Google Scholar 

  • Saurral RI, Camilloni IA, Ambrizzi T (2015) Links between topography, moisture fluxes pathways and precipitation over South America. Clim Dyn 45(3–4):777–789. https://doi.org/10.1007/s00382-014-2309-z

    Article  Google Scholar 

  • Sheffield J, Barrett AP, Colle B et al (2013) North American climate in CMIP5 experiments. Part I: evaluation of historical simulations of continental and regional climatology*. J Clim 26(23):9209–9245

    Article  Google Scholar 

  • Sierra JP, Arias PA, Vieira SC (2015) Precipitation over northern South America and its seasonal variability as simulated by the CMIP5 models. Adv Meteorol. https://doi.org/10.1155/2015/634720

    Google Scholar 

  • Taylor KE (2000) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Tjiputra JF, Roelandt C, Bentsen M et al (2013) Evaluation of the carbon cycle components in the Norwegian earth system model (NorESM). Geosci Model Dev 6(2):301–325

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Mélia DS et al (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121

    Article  Google Scholar 

  • Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4. 0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmos Ocean Phys 46(4):414–431

    Article  Google Scholar 

  • Wang X, Auler AS, Edwards RL et al (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432(7018):740–743

    Article  Google Scholar 

  • Wang C, Zhang L, Lee SK, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4(3):201–205

    Article  Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic Press, Cambridge, p 704

    Google Scholar 

  • Xin X, Wu T, Zhang J (2012) Introductions to the CMIP5 simulations conducted by the BCC climate system model. Adv Clim Change Res 8:378–382

    Google Scholar 

  • Yin L, Fu R, Shevliakova E, Dickinson RE (2013) How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Clim Dyn 41(11–12):3127–3143

    Article  Google Scholar 

  • Yokoi S, Takayabu YN, Nishii K et al (2011) Application of cluster analysis to climate model performance metrics. J Appl Meteorol Climatol 50(8):1666–1675

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. 90(0):23–64

  • Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2013) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40(5–6):1301–1318

    Article  Google Scholar 

  • Zhang GJ, Wang H (2006) Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys Res Lett 33(6):L06709. https://doi.org/10.1029/2005GL025229

    Article  Google Scholar 

  • Zhang ZS, Nisancioglu K, Bentsen M et al (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci Model Dev 5(2):523–533

    Article  Google Scholar 

  • Zubler EM, Fischer AM, Fröb F, Liniger MA (2016) Climate change signals of CMIP5 general circulation models over the Alps–impact of model selection. Int J Climatol 36(8):3088–3104

    Article  Google Scholar 

  • Zuluaga MD, Poveda G (2004) Diagnostics of mesoscale convective systems over Colombia and the eastern tropical Pacific during 1998–2002. Avances en Recursos Hidráulicos 11:145–160

    Google Scholar 

Download references

Acknowledgements

This work was supported by “Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia” (Colciencias) Program no. 5509-543-31966 and Grant no. 115-660-44588. The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and they also thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Sierra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sierra, J.P., Arias, P.A., Vieira, S.C. et al. How well do CMIP5 models simulate the low-level jet in western Colombia?. Clim Dyn 51, 2247–2265 (2018). https://doi.org/10.1007/s00382-017-4010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-4010-5

Keywords

Navigation