Skip to main content

Advertisement

Log in

Regional climate of the subtropical central Andes using high-resolution CMIP5 models—part I: past performance (1980–2005)

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study assesses the performance of 15 high resolution global climate models (GCMs) over the complex orographic region of the subtropical central Andes from available simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). The simulated past climate (1980–2005) was compared against the Climate Research Unit (CRU) dataset and the ERA-Interim reanalysis, considered as reference datasets, to evaluate regional and seasonal surface temperature and precipitation, as well as sea level pressure and circulation. A good agreement was found between the simulations and the reference datasets for winter precipitation and for temperature over both seasons. Whilst all models correctly reproduce the annual cycle of precipitation, some of them overestimate winter totals. ERA-Interim does not adequately represent summer precipitation over the region, and some of the models analyzed also show the same deficiency. All models correctly reproduce the northward migration of the South Pacific subtropical high during winter, although some of them underestimate the maximum central pressure. During summer, most models fail to show the low level north–south flow parallel to the eastern foothills of the Andes, a feature known as the Low Level Jet. Further analysis of the results of the simulations led to the selection of a sub-set of five CMIP5 GCMs to construct a reduced ensemble. This reduced ensemble is a better representation than the multi-model mean of the 15 GCMs of the past climate at this region and would be recommended for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116: 505–524

    Article  Google Scholar 

  • Aceituno P, Fuenzalida H, Rosenbluth B (1993) Climate along the extratropical west coast of South America. In: Mooney HA, Fuentes ER, Kronberg BI (eds) Earth system responses to global change: contrasts between North and South America. Academic Press, NY, pp 61–72

    Google Scholar 

  • Agosta EA, Compagnucci RH (2008) Procesos atmosféricos/oceánicos de baja frecuencia sobre la cuenca sudoeste del Atlántico Sur y la variabilidad de la precipitación en el centro-oeste de Argentina. Geoacta 33:21–33

    Google Scholar 

  • Barros V, Castañeda ME, Doyle M (2000) Recent precipitation trends in southern South America east of the Andes: an indication of climate variability. In: Smolka PP, Volkheimer W (eds) Southern Hemisphere Paleo and Neo-Climates. Springer, Berlin, pp 187–206

  • Blázquez J, Nuñez MN (2013) Performance of a high resolution global model over southern South America. Int J Climatol 33:904–919. doi:10.1002/joc.3478

    Article  Google Scholar 

  • Boulanger J-P, Leloup J, Penalba O, Rusticucci M, Lafon F, Vargas W (2005) Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Clim Dyn 24: 393–413. doi:10.1007/s00382-004-0514-x

    Article  Google Scholar 

  • Bradley RS, Keimig FT, Diaz HF (2004) Projected temperature changes along the American cordillera and the planned GCOS network. Geophys Res Lett 31:L16210. doi:10.1029/2004GL020229

    Article  Google Scholar 

  • Brands S, Herrera S, Fernandez J, Gutierrez JM (2013) How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Clim Dyn 41: 803–817

    Article  Google Scholar 

  • Carvalho LMV, Jones C (2013) CMIP5 simulations of low-level tropospheric temperature and moisture over tropical Americas. J Clim 26:6257–6286

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137: 553–597, doi:10.1002/qj.828

    Article  Google Scholar 

  • Di Castri F (1973) Climatographical comparisons between Chile and the western coast of North America. In: Di Castri F, Mooney HA (eds) Mediterranean type ecosystems. Springer, Berlin, pp 21–36

    Chapter  Google Scholar 

  • Di Castri F, Hajek E (1976) Bioclimatología de Chile. Ediciones Universidad Católica de Chile, Santiago, Chile, p 128

  • Falvey M, Garreaud RD (2007) Wintertime precipitation episodes in Central Chile: Associated meteorological conditions and orographic influences. J Hydrometeorol 8:171–193

    Article  Google Scholar 

  • Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. doi:10.1029/2008JD010519

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of Climate Models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Fuenzalida H (1982) A country of extreme climate (in Spanish). Chile: Essence and Evolution. In: Garcia H (ed) Instituto de Estudios Regionales, Universidad de Chile, 27–35.

    Google Scholar 

  • Gandu AW, Silva Dias PL (1998) Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence. J Geophys Res 103(D6):6001–6015

    Article  Google Scholar 

  • Garreaud RD (2009) The Andes climate and weather. Adv Geosci 22: 3–11

    Article  Google Scholar 

  • Giorgi F et al (2001) Regional climate information—evaluation and projections. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 583–638

  • Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. I: present day climate (1961–1990). Clim Dyn 22: 733–756. doi:10.1007/s00382-004-0409-x

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull, vol 58, World Meteorological Organization, Geneva, Switzerland, pp 175–183

  • Gulizia CN, Camilloni I (2015) Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int J Climatol 35:583–595. doi:10.1002/joc.4005

    Article  Google Scholar 

  • Haylock MR, Alves LM, Ambrizzi T, Anunciacao YMT, Báez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, García VJ, Grim AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assesment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim Dyn 41(11–12): 2921–2936. doi:10.1007/s00382-012-1644-1

    Article  Google Scholar 

  • Jones C, Carvalho L (2013) Climate change in the South American monsoon system: present climate and CMIP5 projections. J Clim 26:6660–6678. doi:10.1175/JCLI-D-12-00412.1

    Article  Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophy Res Lett 40: 1194–1199. doi:10.1002/grl.50256

    Article  Google Scholar 

  • Krepper CM, Scian B, Pierini J (1989) Time and space variability of rainfall in central-east Argentina. J Clim 2:39–47

    Article  Google Scholar 

  • Kumar D, Kodra E, Ganguly AR (2014) Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation. Clim Dyn 43: 2491–2518. doi:10.1007/s00382-014-2070-3

    Article  Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the Bolivian High and related circulation features of the South American climate. J Atmos Sci 54:656–678

    Article  Google Scholar 

  • Liebmann B, Kiladis GN, Vera CS, Saulo AC, Carvalho LMV. (2004) Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic Convergence Zone. J Clim 17:3829–3842

    Article  Google Scholar 

  • Masiokas MH, Villalba R, Luckman B, Le Quesne C, Aravena JC (2006) Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: large-scale atmospheric influences and implications for water resources in the region. J Clim 19:6334–6352. doi:10.1175/JCLI3969.1

    Article  Google Scholar 

  • McSweeney CF, Jones RG, Lee RW, Rowell DP (2014) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237–3260. doi:10.1007/s00382-014-2418-8.

    Article  Google Scholar 

  • Minetti JL, Vargas WM (1997) Trends and jumps in the annual precipitation in South America south of the 15°S. Atmosfera 11:205–221

    Google Scholar 

  • Minetti JL, Vargas WM, Poblete AG, Acuña LR, Casagrande G (2003) Non-linear trends and low frequency oscillations in annual precipitation over Argentina and Chile, 1931–1999. Atmosfera 16: 119–135

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Montecinos A, Díaz A, Aceituno P (2000) Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J Clim 13:746–758

    Article  Google Scholar 

  • Palazzi E, von Hardenberg J, Terzago S, Provenzale A (2015) Precipitation in the Karakoram-Himalaya: a CMIP5 view. Clim Dyn 45: 21–45. doi:10.1007/s00382-014-2341-z

    Article  Google Scholar 

  • Palomino-Lemus R, Córdoba-Machado S, Gámiz-Fortis SR, Castro-Díez Y, Esteban-Parra MJ (2015) Summer precipitation projections over northwestern South America from CMIP5 models. Global Planet Change 131:11–23

    Article  Google Scholar 

  • Rangwala I, Sinsky E, Miller JR (2013) Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ Res Lett 8:024040. doi:10.1088/1748-9326/8/2/024040

    Article  Google Scholar 

  • Rosenblüth B, Fuenzalida H, Aceituno P (1997) Recent temperature variations in southern South America. Int J Climatol 17:67–85

    Article  Google Scholar 

  • Rusticucci M, Zazulie N, Raga GB (2014) Regional winter climate of the southern central Andes: assessing the performance of ERA-Interim for climate studies. J Geophys Res 119:8568–8582. doi:10.1002/2013JD021167

    Google Scholar 

  • Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over Southeastern South America and its relationship with the South American low level jet. Mon Weather Rev 135:1290–1309. doi:10.1175/MWR3305.1

    Article  Google Scholar 

  • Satyamurty P, Nobre CA, Silva Dias PL (1998) South America. In: Karoly DJ, Vincent DG (eds) Meteorology of the southern hemisphere. Meteor Mon, pp 119–139

  • Seiler C, Hutjes RWA, Kabat R (2013) Likely ranges of climate change in Bolivia. J Appl Meteorol Climatol 52:1303–1317. doi:10.1175/JAMC-D-12-0224.1

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. doi:10.1002/jgrd.50203

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An over-view of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Terzago S, von Hardenberg J, Palazzi E, Provenzale A (2014) Snowpack Changes in the Hindu Kush–Karakoram–Himalaya from CMIP5 global climate models. J Hydrometeor 15:2293–2313. doi:10.1175/JHM-D-13-0196.1

    Article  Google Scholar 

  • Vera C, Silvestri G, Liebmann B, Gonzalez P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.1029/2006GL025759

    Article  Google Scholar 

  • Viale M, Nuñez MN (2011) Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J Hydrometeor 12:481–507. doi:10.1175/2010JHM1284.1

    Article  Google Scholar 

  • Vincent LA, Peterson TC, Barros VR, Marino MB, Rusticucci M, Carrasco G, Ramirez E, Alves LM, Ambrizzi T, Berlato MA, Grimm AM, Marengo JA, Molion L, Moncunill DF, Rebello E, Anunciação YMT, Quintana J, Santos JL, Baez J, Coronel G, Garcia J, Trebejo I, Bidegain M, Haylock MR, Karoly D (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Clim 18:5011–5023. doi:10.1175/JCLI3589.1

    Article  Google Scholar 

  • Yin L, Fu R, Shevliakova E, Dickinson RE (2013) How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Clim Dyn 41: 3127–3143

    Article  Google Scholar 

  • Zubler EM, Fischer AM, Fröb F, Liniger MA (2015) Climate change signals of CMIP5 general circulation models over the Alps—impact of model selection. Int J Climatol. doi:10.1002/joc.4538

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments, which helped strengthen the manuscript. This work has been supported by project UBA-20020130200142BA from the University of Buenos Aires. We acknowledge the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the CMIP5 model output. We are grateful to the ECWMF and the CRU for providing reanalysis and gridded observed data sets. Finally, we thank Dr. D. Baumgardner for the editorial and language review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Zazulie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

382_2017_3560_MOESM1_ESM.tif

Fig. S1 Mean 200 hPa wind speed in m seg−1 (shaded) and direction (arrows) from the different GCMs for summer over the period 1980-2005. (TIF 95643 KB)

382_2017_3560_MOESM2_ESM.tif

Fig. S2 Mean 200 hPa wind speed in m seg−1 (shaded) and direction (arrows) from the different GCMs for winter over the period 1980-2005. (TIF 93037 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zazulie, N., Rusticucci, M. & Raga, G.B. Regional climate of the subtropical central Andes using high-resolution CMIP5 models—part I: past performance (1980–2005). Clim Dyn 49, 3937–3957 (2017). https://doi.org/10.1007/s00382-017-3560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3560-x

Keywords

Navigation