Skip to main content

Advertisement

Log in

Heat balance and eddies in the Peru-Chile current system

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Peru-Chile current System (PCS) is a region of persistent biases in global climate models. It has strong coastal upwelling, alongshore boundary currents, and mesoscale eddies. These oceanic phenomena provide essential heat transport to maintain a cool oceanic surface underneath the prevalent atmospheric stratus cloud deck, through a combination of mean circulation and eddy flux. We demonstrate these behaviors in a regional, quasi-equilibrium oceanic model that adequately resolves the mesoscale eddies with climatological forcing. The key result is that the atmospheric heating is large (>50 W m−2) over a substantial strip >500 km wide off the coast of Peru, and the balancing lateral oceanic flux is much larger than provided by the offshore Ekman flux alone. The atmospheric heating is weaker and the coastally influenced strip is narrower off Chile, but again the Ekman flux is not sufficient for heat balance. The eddy contribution to the oceanic flux is substantial. Analysis of eddy properties shows strong surface temperature fronts and associated large vorticity, especially off Peru. Cyclonic eddies moderately dominate the surface layer, and anticyclonic eddies, originating from the nearshore poleward Peru-Chile Undercurrent (PCUC), dominate the subsurface, especially off Chile. The sensitivity of the PCS heat balance to equatorial intra-seasonal oscillations is found to be small. We demonstrate that forcing the regional model with a representative, coarse-resolution global reanalysis wind product has dramatic and deleterious consequences for the oceanic circulation and climate heat balance, the eddy heat flux in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. http://www.marine.csiro.au/~dunn/cars2006/

  2. Off Peru the shelf is about 100 km wide, while it is much narrower off Chile. Estrade et al. (2008) show that both the location of the upwelling and its width vary with the topography.

  3. Alongshore averaging over 7 (Peru) to 10 (Chile) degrees increases the number of independent realizations by a factor of at least 3 (off Peru where the deformation radius, and hence the eddy correlation length, is largest). Off Chile the factor may be closer to 10.

  4. The transition region between Peru and Chile (17–22°S) is where most VOCALS measurements were made. It has a heat balance somewhat similar to Peru.

  5. This is different from the Equatorial Undercurrent, as sometimes suggested in previous studies that are based on coarse-resolution models (e.g., Cravatte et al. 2007).

References

  • Armi L, Zenk W (1984) Large lenses of highly saline Mediterranean water. J Phys Oceanogr 14:1560–1576

    Article  Google Scholar 

  • Barnier B, Siefried L, Marchesiello P (1995) Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J Mar Sys 6:363–380

    Article  Google Scholar 

  • Becker JJ, Sandwell DT, Smith W et al (2009) Global Bathymetry and elevation data at 30 arc seconds resolution: SRTM30 PLUS. Marine Geodesy 32:355–371

    Article  Google Scholar 

  • Blanco JL, Carr ME, Thomas AC, Strub PT (2002) Hydrographic conditions off Northern Chile during the 1996–1998 La Niña and El Niño events. J Geophys Res 107:3017. doi:10.1029/2001JC001002

    Article  Google Scholar 

  • Blanco JL, Thomas AC, Carr M-E, Strub PT (2001) Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile. J Geophys Res 106:11451–11467

    Article  Google Scholar 

  • Boe J, Hall A, Colas F, McWilliams JC, Qu X, Kurian J (2011) What shapes mesoscale wind anomalies in coastal upwelling zones?. Clim Dyn 36(11–12):2037–2049. doi:10.1007/s00382-011-1058-5

    Article  Google Scholar 

  • Brink KH, Halpern D, Huyer A, Smith RL (1983) The physical environment of the Peruvian upwelling system. Prog Oceanogr 12:185–205

    Google Scholar 

  • Capet X, Marchesiello P, McWilliams JC (2004) Upwelling response to coastal wind profiles. Geophys Res Lett 31:L13311. doi:10.1029/2004GL020123

    Article  Google Scholar 

  • Capet X, Colas F, Penven P, Marchesiello P, McWilliams JC (2008a) Eddies in eastern-boundary subtropical upwelling systems, vol. 177. Eddy-Resolving Ocean Modeling, AGU Monograph, Washington DC, p 350

  • Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008b) Mesoscale to submesoscale transition in the California Current System. part I: flow structure, eddy flux, and observational tests. J Phys Oceanogr 38:29–43. doi:11756/2007JPO3671.1

    Google Scholar 

  • Carton J, Giese B (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017. doi:10.1175/2007MWR1978.1

    Article  Google Scholar 

  • Casey KS, Cornillon P (1999) A comparison of satellite and in situ based sea surface temperature climatologies. J Clim 12:1848–1863

    Article  Google Scholar 

  • Castelao RM, Barth JA (2006) The relative importance of wind strength and along-shelf bathymetric variations on the separation of a coastal upwelling jet. J Phys Oceanogr 36:412–425. doi:10.1175/JPO2867.1

    Article  Google Scholar 

  • Castelao RM, Mavor T, Barth JA, Breaker L (2006) Sea surface temperature fronts in the California Current System from geostationary satellite observations. J Geophys Res 111:C09026. doi:10.1029/2006JC003541

    Article  Google Scholar 

  • Chaigneau A, Gizolme A, Grados C (2008) Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Prog Oceanography 79:106–119. doi:10.1016/j.pocean.2008.10.013

    Article  Google Scholar 

  • Chaigneau A, Pizarro O (2005) Eddy characteristics in the eastern South Pacific. J Geophys Res 110:C06005. doi:10.1029/2004JC002815

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. doi:10.1029/2007GL030812

    Article  Google Scholar 

  • Colas F, Capet X, McWilliams JC, Shchepetkin AF (2008) 1997–98 El Niño off Peru: A numerical study. Prog Oceanography 79:138–155. doi:10.1016/j.pocean2008.10.1015

    Article  Google Scholar 

  • Colbo K, Weller RA (2007) The variability and heat budget of the upper ocean under the Chile-Peru stratus. J Mar Res 65:607–637. doi:1357/002224007783649510

    Article  Google Scholar 

  • Collins WD et al (2006) The Community Climate System Model version 3 CCSM. J Clim 19:2122–2143. doi:10.1175/JCLI13761.1

    Article  Google Scholar 

  • Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2007) Progress in the 3-d circulation of the eastern equatorial Pacific in a climate ocean model. Ocean Model 17:28–48. doi:10.1016/j.ocemod.2006.11.003

    Article  Google Scholar 

  • Cronin MF, Bond NA, Fairall CW, Weller RA (2006) Surface cloud forcing in the east Pacific stratus deck/cold tongue/ITCZ complex. J Clim 19:392–409. doi:10.1175/JCLI3620.1

    Article  Google Scholar 

  • Da Silva AM, Young CC, Levitus S (1994) Atlas of surface marine data 1994, vol 1, algorithms and procedures. NOAA Atlas NESDIS, 6, p 74

  • D’Asaro E (1988) Generation of submesoscale vortices: A new mechanism. J Geophys Res 93:6685–6693

    Article  Google Scholar 

  • de Boyer-Montegut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

  • de Szoeke SP, Fairall CW, Wolfe DE, Bariteau L, Zuidema P (2010) Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean-atmosphere models. J Clim 23:4152–4174. doi:10.1175/2010JCLI3411.1

    Article  Google Scholar 

  • Estrade P, Marchesiello P, Colin de Verdiere A, Roy C (2008) Cross-shelf structure of coastal upwelling: A two dimensional extension of Ekman theory and a mechanism for inner shelf upwelling shut down. J Mar Res 66:589–616. doi:10.1357/002224008787536790

    Google Scholar 

  • Flierl GR, McWilliams JC (1979) On the sampling requirements for measuring moments of eddy variability. J Mar Res 35:797–820

    Google Scholar 

  • Garfield N, Collins CA, Paquette RG, Carter E (1999) Lagrangian exploration of the California Undercurrent, 1992–95. J Phys Oceanogr 29:560–583

    Article  Google Scholar 

  • Gent PR, Yeager SG, Neale RB, Levis S, Bailey DA (2009) Improvements in a half degree atmosphere-land version of the CCSM. Clim Dyn doi:10.1007/s00382-009-0614-8

  • Hakim GJ, Snyder C, Muraki DJ (2002) A new surface model for cyclone-anticyclone asymmetry. J Atmos Sci 59:2405–2420

    Article  Google Scholar 

  • Huyer A, Knoll M, Paluszkiewicz T, Smith RL (1991) The Peru Undercurrent: A study in variability. Deep-Sea Res 38(suppl. 1):5247–5271

    Google Scholar 

  • Huyer A, Smith RL, Paluszkiewicz T (1987) Coastal upwelling off Peru during normal and El Niño times, 1981–1984. J Geophys Res 92:14297–14307

    Article  Google Scholar 

  • Isern-Fontanet J, Garcia-Ladona JE, Font J (2003) Identification of marine eddies from altimetric maps. J Atmos Ocean Technol 20:772–778

    Article  Google Scholar 

  • Johnson GC, McTaggart KE (2010) Equatorial Pacific 13°C water eddies in the Eastern Subtropical South Pacific Ocean. J Phys Oceanogr 40:226–235. doi:10.1175/2009JPO4287.1

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Karstensen J (2004) Formation of the South Pacific shallow salinity minimum: a southern ocean pathway to the tropical Pacific. J Phys Oceanogr 34:2398–2412. doi:10.1175/JPO2634.1

    Article  Google Scholar 

  • Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69:181–217. doi:10.1016/j.pocean.2006.03.009

    Article  Google Scholar 

  • Kessler WS, McPhaden MJ, Weickman KM (1995) Forcing of intraseaonsal Kelvin waves in the equatorial Pacific. J Geophys Res 100:C6–1061310631

    Article  Google Scholar 

  • Kurian J, Colas F, Capet X, McWilliams JC, Chelton DB (2011) Eddy properties in the California Current System. J Geophys Res. doi:10.1029/2010JC006895 (in press)

  • Large WG, Danabasoglu G (2006) Attributions and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346. doi:10.1175/JCLI3740.1

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophysics 32:363–403

    Article  Google Scholar 

  • Large WG, Yeager S (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364. doi:1005/s00382-008-0441-3

    Article  Google Scholar 

  • Letelier J, Pizarro O, Nunez S (2009) Seasonal variability of coastal upwelling and the upwelling front off central Chile. J Geophys Res 114. doi:10.1029/2008JC005171

  • Manganello JV, Huang B (2009) The influence of systematic errors in the Southeast Pacific on ENSO variability and prediction in a coupled GCM. Clim Dyn 32. doi:10.1007/s00382-008-0407-5

  • Marchesiello P, Debreu L, Couvelard X (2009) Spurious diapycnal mixing in terrain-following coordinate models: the problem and a solution. Ocean Model 26:156–169. doi:10.1016/j.ocemod.2008.09.004

    Article  Google Scholar 

  • Marchesiello P, Estrade P (2007) Eddy activity and mixing in upwelling systems: a comparative study of northwest Africa and California regions. Int J Earth Sci 98:299–308. doi:10.1007/s00531-007-0235-6

    Article  Google Scholar 

  • Marchesiello P, McWilliams JC, Shchepetkin AF (2003) Equilibrium structure and dynamics of the California Current System. J Phys Oceanogr 33:753–783

    Article  Google Scholar 

  • Mason E, Molemaker MJ, Shchepetkin AF, Colas AF, McWilliams JC, Sangra P (2010) Procedures for offline grid nesting in regional ocean models. Ocean Model 35:1–15. doi:10.1016/j.ocemod.2010.05.007

    Article  Google Scholar 

  • Mason E, Colas F, Molemaker MJ, Shchepetkin AF, Troupin C, McWilliams JC, Sangra P (2011) Seasonal variability of the Canary current: a numerical study. J Geopys Res 116 doi:10.1029/2010JC006665

  • McCreary JP, Lu P, Yu Z (2002) Dynamics of the Pacific subsurface countercurrents. J Phys Oceanogr 32:2379–2404

    Article  Google Scholar 

  • McWilliams JC (1985) Submesoscale, coherent vortices in the ocean. Rev Geophysics 23:165–182

    Article  Google Scholar 

  • McWilliams JC, Colas F, Molemaker MJ (2009a) Cold filamentary intensification and oceanic surface convergence lines. Geophys Res Lett 36:L18602. doi:10.1029/2009GL039402

  • McWilliams JC, Molemaker MJ, Olafsdottir EI (2009b) Linear fluctuation growth during frontogenesis. J Phys Oceanogr 39:3111–3129. doi:10.1175/2009JPO4186.1

    Google Scholar 

  • Mechoso CM, Wood R (April 2010) An abbreviated history of VOCALS. CLIVAR Exchanges 53

  • Milliff R, Morzel J (2001) The global distribution of the time-average wind stress curl from NSCAT. J Atmos Sci 58:109–131

    Article  Google Scholar 

  • Molemaker MJ, McWilliams JC, Capet X (2010) Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J Fluid Mech 654:35–63. doi:1017/s0022112009993272

    Article  Google Scholar 

  • Molemaker MJ, McWilliams JC, Dewar WK (2011) Submesoscale generation of mesoscale anticyclones in the California Undercurrent. J Phys Oceanogr (submitted)

  • Montes I, Colas F, Capet X, Schneider W (2010) On the pathways of the equatorial subsurface currents in the Eastern equatorial Pacific and their contributions to the Peru-Chile Undercurrent. J Geophys Res 115:C09003. doi:10.1029/2009JC005710

    Article  Google Scholar 

  • Morrow R, Birol F, Griffin D, Sudre J (2004) Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys Res Lett 31:L24311. doi:10.1029/2004GL020974

    Article  Google Scholar 

  • Navarra A et al (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21:730–750

    Article  Google Scholar 

  • Pascual A, Faugere Y, Larnicol G, Le Traon PY (2006) Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys Res Lett 33:L02611. doi:10.1029/2005GL024633

    Article  Google Scholar 

  • Penven P, Echevin V, Pasapera J, Colas F, Tam J (2005) Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: a modeling approach. J Geophys Res 110. doi:10.1029/2005JC002945110

  • Penven P, Marchesiello P, Debreu L, Lefevre J (2008) Software tools for pre- and post-processing of oceanic regional simulations. Environ Modell Softw 23:660–662. doi:1016/j.envsoft.2007.07.004

    Article  Google Scholar 

  • Philander SG, Yoon JH (1982) Eastern boundary currents and coastal upwelling. J Phys Oceanogr 12:862–879

    Article  Google Scholar 

  • Pickett MH, Paduan JD (2003) Ekman transport and pumping in the California Current based on the U.S. Navy’s high-resolution atmospheric model COAMPS. J Geophys Res 108 doi:10.1029/2003JC001902

  • Pingree RD, Le Cann B (1992) Three anticyclonic Slope Water Oceanic eDDIES (SWODDIES) in the Southern Bay of Biscay. Deep-Sea Res 39:1147–1175

    Article  Google Scholar 

  • Pizarro O, Shaffer G, Dewitte B, Ramos M (2002) Dynamics of seasonal and interannual variability of the Peru-Chile Undercurrent. Geophys Res Lett 29. doi:10.1029/2002GL014790

  • Reynolds R, Chelton DB (2010) Comparisons of daily Sea Surface Temperature analyses for 2007–08. J Clim 23:3545–3562. doi:10.1175/2010JCLI3294.1

    Article  Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413. doi:10.1175/2008.JPO3881.1

    Article  Google Scholar 

  • Rudnick DL (2001) On the skewness of vorticity in the upper ocean. Geophys Res Lett 28:2045–2048

    Article  Google Scholar 

  • Shaffer G, Hormazabal S, Pizarro O, Salinas S (1999) Seasonal and interannual variability of currents and temperature off central Chile. J Geophys Res 104:29951–29961

    Article  Google Scholar 

  • Shaffer G, Pizarro O, Djurfeldt L, Salinas S, Ruttlant J (1997) Circulation and low-frequency variability near the Chilean coast : remotely forced fluctuations during the 1991-1992 El Niño. J Phys Oceanogr 27:217–235

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The Regional Oceanic Modeling System: a split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Model 9:347–404. doi:10.1016/j.ocemod.2004.08.002

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2009) Correction and commentary for “Ocean forecasting in terrain-following coordinates: formulation and skill assesment of the regional ocean modeling system” by Haidvogel et al. J Comp Phys 227:3595-3624. J Comp Phys 228:24:8985-9000 doi:10.1016/j.jcp.2009.09.002

  • Stark JD, Donlon CJ, Martin MJ, McCulloch ME (2007) An operational, high resolution, real time, global sea surface temperature analysis system. Marine Challenges: Coastline to Deep Sea. Aberdeen, Scotland. IEEE

  • Strub PT, Mesias JM, Montecino V, Ruttlant J, Salinas S (1998) The sea, vol. 11, chap. 10: Coastal ocean circulation off western South America. Wiley, London, pp 29–67

    Google Scholar 

  • Toniazzo T, Mechoso RC, Shaffrey LC, Slingo JM (2010) Upper-ocean heat budget and ocean eddy transport in the southeast Pacific in a high-resolution coupled model. Clim Dyn 35:1309–1329. doi:10.101007/s00382-009-0703-8

    Article  Google Scholar 

  • Veitch J, Penven P, Shillington F (2010) Modelling equilibrium dynamics of the Benguela Current System. J Phys Oceanogr 40:1942–1964. doi:10.1175/2010JPO4382.1

    Article  Google Scholar 

  • Wood R, Mechoso CR, Bretherton C, Huebert B, Weller R (2007) The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS). CLIVAR Variat Newslett 5(1):1–5

    Google Scholar 

  • Xie S et al (2007) A regional ocean-atmosphere model for Eastern Pacific climate: toward reducing tropical biases. J Clim 20(1):1504–1522. doi:10.1175/JCLI4080.1

    Article  Google Scholar 

  • Yu JY, Mechoso CR (1999) Links between annual variations of Peruvian stratocumulus clouds and of SST in the Eastern Equatorial Pacific. J Clim 12:3305–3318

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Amer Meteor Soc 88:527–539. doi:10.1175/bams-88-4-527

    Article  Google Scholar 

  • Zheng J, Shinoda T, Kiladis GN, Lin J, Metzger EJ, Hurlburt HE, Giese BS (2010) Upper-ocean processes under the stratus cloud deck in the Southeast Pacific Ocean. J Phys Oceanogr 40:103–120. doi:10.1175/2009JPO4213.1

    Article  Google Scholar 

  • Zheng J, Shinoda T, Lin JL, Kiladis GN (2011) Sea surface temperature biases under the stratus cloud deck in the Southeast Pacific ocean in 19 IPCC AR4 coupled general circulation models. J Clim. doi:10.1175/2011JCLI4172.1 (in press)

Download references

Acknowledgments

Support was provided by the Office of Naval Research, grant N00014-08-1-0597 and the National Science Foundation, grant ATM-0747533 (VOCALS program). The altimeter products were produced by SSALTO-DUACS and distributed by AVISO with support from CNES. The AVHRR-Pathfinder SST data were obtained from the Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the NASA Jet Propulsion Laboratory. The CARS climatology is from the CSIRO Marine Laboratories. The sea surface temperature product OSTIA is from U.K. Meteorological Office data. Some of the computations were made at the National Center for Supercomputer Applications (NCSA). We thank Alexander Shchepetkin for his sustained effort to improve the ROMS model and thorough knowledge of parallel computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Colas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colas, F., McWilliams, J.C., Capet, X. et al. Heat balance and eddies in the Peru-Chile current system. Clim Dyn 39, 509–529 (2012). https://doi.org/10.1007/s00382-011-1170-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1170-6

Keywords

Navigation