Skip to main content

Advertisement

Log in

Variability of hydrological extreme events in East Asia and their dynamical control: a comparison between observations and two high-resolution global climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ (2006) Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim Dyn 26:489–511

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines J-M, Treguier A-M, Le Sommer J, Beckmann A, Biastoch A, Bning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn. doi:10.1007/s10236-006-0082-11

  • Chen C-A, Chou C, Chen C-T (2012) Regional perspective on mechanisms for tropical precipitation frequency and intensity under global warming. J Clim 25:8487–8501

    Article  Google Scholar 

  • Chen J-H, Lin S-J (2012) Seasonal prediction of tropical cyclones using a 25-km resolution general circulation model. J Clim 26:380–398

    Article  Google Scholar 

  • Chou C, Neelin JD (2004) Mechanism of global warming impacts on regional tropical precipitation. J Clim 17:2688–2701

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen C-A, Tu J-Y (2009) Evaluationg the “Rich-Get-Richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Chou C, Chen C-A, Tan P-H, Chen K-T (2012) Mechanisms for global warming impacts on precipitation frequency and intensity. J Clim 25:3291–3306

    Article  Google Scholar 

  • Ciu YF, Duan AM, Liu YM, Wu GX (2015) Interannual variability of the spring atmospheric heat source over the tibetan plateau forced by the North Atlantic SSTA. Clim Dyn 45(5):1617–1634

    Google Scholar 

  • Ding Y (1994) Monsoon over China. Kluwer, London

    Google Scholar 

  • Ding Y (2007) The variability of the Asian summer monsoon. J Meteor Soc Jpn 85B:21–54

    Article  Google Scholar 

  • Duan A, Hu J, Xiao Z (2013) The tibetan plateau summer monsoon in the CMIP5 simulations. J Clim 26:7747–7766

    Article  Google Scholar 

  • Freychet N, Hsu H-H, Chou C, Wu C-H (2015) Asian summer monsoon in CMIP5 projections: a link between the change in extreme precipitation and monsoon dynamics. J Clim 28:1477–1493

    Article  Google Scholar 

  • Giorgi F, Im E-S, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G et al (2012) RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • He B, Bao Q, Li JD, Wu GX, Liu YM, Wang XC, Sun ZB (2013) Influences of external forcing changes on the summer cooling trend over East Asia. Clim Change 117:829–841

    Article  Google Scholar 

  • Hsu P-C, Li T, Murakami H, Kitoh A (2013) Future change of the global monsoon revealed from 19 cmip5 models. J Geophys Res Atmos 118:1247–1260. doi:10.1002/jgrd.50145

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeor 8:38–55

    Article  Google Scholar 

  • Inoue T, Ueda H (2011) Delay of the first transition of Asian summer monsoon under global warming condition. SOLA 7:081–084

    Article  Google Scholar 

  • Jhun J-G, Lee E-J (2003) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17:711–726

    Article  Google Scholar 

  • Jones C, Carvalho LMV (2013) Climate change in the South American monsoon system: present climate and CMIP5 projections. J Clim 26:6660–6678

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470

    Article  Google Scholar 

  • Kamae Y, Watanabe M, Kimoto M, Shiogama H (2014) Summertime land-sea thermal contrast and atmospheric circulation over East Asia in a warming climate-Part I: Past changes and future projections. Clim Dyn 43:2553–2568

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173

    Article  Google Scholar 

  • Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysys of extremes in a changing climate in support of informed decisions for adaption. World Meterological Organization 56:1156–1173

    Google Scholar 

  • Kusunoki S, Arakawa O (2012) Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Clim Dyn 38:2055–2072. doi:10.1007/s00382-011-1234-7

    Article  Google Scholar 

  • Li L, Zhang Y (2008) Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the Mei-Yu season. J Clim 27:6660–6672

    Article  Google Scholar 

  • Lin S-J (2004) A vertically lagrangian finite-volume dynamical core for global models. Mon Wea Rev 132:2293–2307

    Article  Google Scholar 

  • Lin YE, Pereira JJ, Corlett RT, Xcui GE, Insarov RD (2014) LascoELindgren, A Surjan. Asia. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspect. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Cambridge University Press, Cambridge

  • Liu G, Zhao P, Chen J (2015) Preceding factors of summer Asia-Pacific oscillation and the physical mechanism for their potential influences. J Clim 28:2531–2543

    Article  Google Scholar 

  • Liu YM, Hoskins BJ, Blackburn M (2007) Impact of Tibetan orography and heating on the summer flow over Asia. J Metero Soc Jpn 85B:1–19

    Article  Google Scholar 

  • Liu YM, Wu GX, Hong JL, Duan AM, Bao Q, Zhou LJ (2012) Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Clim Dyn 39(5):1183–1195. doi:10.1007/s00382-012-1335-y

    Article  Google Scholar 

  • Matsumura S, Sugimoto S, Sato T (2015) Recent intensification of the Western Pacific subtropical high associated with the East Asian summer monsoon. J Clim 28:2873–2883

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett 32:L18719. doi:10.1029/2005GL023680

    Article  Google Scholar 

  • Min S-K, Legutke S, Hense A, Cubasch U, Kwon W-T, Oh J-H, Schlese U (2012) Projected changes in Asian summer monsoon in RCP scenarios of CMIP5. Atmos Ocean Sci Lett 5:43–48

    Article  Google Scholar 

  • Park CY, Min S-K, Lee DH, Cha D-H, Suh M-S, Kang H-S, Hong S-Y, Lee D-K, Baek H-J, Boo K-O, Kwon W-T (2015) Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dyn 1–18. doi:10.1007/s00382-015-2713-z

  • Putman WM, Lin S-J (2007) Finite-volume transport on various cubed-sphere grids. J Comput Phys 227:55–78

    Article  Google Scholar 

  • Ramage CS (1971) Monsoon meteorology, volume 15 of international geophysics series. Academic Press, San Diego

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Risnen J (2005) CO2-induced impact of increasing CO2 on monthly-to-annual precipitation extremes: analysis of the CMIP2 experiments. Clim Dyn 24:309–323

    Article  Google Scholar 

  • Scoccimarro E, Gualdi S, Bellucci A, Zampiery M, Navara A (2013) Heavy precipitation events in a warmer climate: results from CMIP5 models. J Clim 26:7902–7911

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668

    Article  Google Scholar 

  • Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo SJ, Rojas M (2013) CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J Clim 26:7328–7351

    Article  Google Scholar 

  • Shiu CJ, Liu SC, Fu C, Dai A, Sun Y (2012) How much do precipitation extremes change in a warming climate? Geophys Res Lett 39:L17707. doi:10.1029/2012GL052762

    Article  Google Scholar 

  • Sorooshian S, Hsu KL, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite based estimates of tropical rainfall. Bull Am Meteor Soc 81:2035–2046

    Article  Google Scholar 

  • Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Clim 21:6141–6155

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspect of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster M, Meehl GA (2006) Going to extremes. Clim Change 79(3):185–211

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen R, Parsons D (2003) The changing character of precipitation. Bull Am Meteor Soc 84:1205–1217

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595. doi:10.1038/NCLIMATE1495

    Article  Google Scholar 

  • Wang B (2006) The Asian Monsoon. Praxis Publishing Ldt, Chichester

    Google Scholar 

  • Wang B, Ding Q (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett 33:L06711. doi:10.1029/2005GL025347

    Google Scholar 

  • Wang B, Wu Z, Li J, Liu J, Chang C-P, Ding Y, Wu G (2008) How to measure the strength of the East Asian summer monsoon. J Clim 21:4449–4463

    Article  Google Scholar 

  • Wang L, Chen W (2014) An intensity index for the East Asian winter monsoon. J Clim 27:2361–2374

    Article  Google Scholar 

  • Williams KD, Harris CM, Bodas-Salcedo A, Camp J, Comer RE, Copsey D, Fereday D, Graham T, Hill R, Hinton T, Hyder P, Ineson S, Masato G, Milton SF, Roberts MJ, Rowell DP, Sanchez C, Shelly A, Sinha B, Walters DN, West A, Woollings T, Xavier PK (2015) The met office global coupled model 2.0 (GC2) configuration. Geosci Model Dev 88:1509–1524. doi:10.5194/gmd-88-1509-2015

    Article  Google Scholar 

  • Wu GX, Liu YM, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of the mechanical and thermal forcing of the Tibetan Plateau on the Asian climate. J Hydrometeorol 8:770–789

    Article  Google Scholar 

  • Wu GX, Liu YM, Bao Q, Duan A, Jin F-F (2012) Thermal controls on the Asian summer monsoon. Nat Sci Rep 2:404. doi:10.1038/srep00404

    Google Scholar 

  • Yatagai A, Arakawa O, Kamiguchi K, Kawamoto H, Nodzu MI, Hamada A (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA 5:137–140. doi:10.2151/sola.2009-035

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: Constructing a long-termdaily gridded precipitation dataset for Asia based on a densenetwork of rain gauges. Bull Am Meteor Soc 93:1401–1415

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consortium for Climate Change Study (CCliCS) - Ministry of Science and Technology (MOST), Taiwan, under Grant MOST 100-2119-M-001-029-MY5, and by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. We are grateful for the National Center for High-performance Computing (NCHC) for computer time and facilities. We deeply thank the two anonymous reviewers that helped us to build a stronger paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Freychet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freychet, N., Duchez, A., Wu, CH. et al. Variability of hydrological extreme events in East Asia and their dynamical control: a comparison between observations and two high-resolution global climate models. Clim Dyn 48, 745–766 (2017). https://doi.org/10.1007/s00382-016-3108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3108-5

Keywords

Navigation