Skip to main content

Advertisement

Log in

Accelerated greenhouse gases versus slow insolation forcing induced climate changes in southern South America since the Mid-Holocene

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper is a pioneering analysis of past climates in southern South America combining multiproxy reconstructions and the state-of-the-art CMIP5/PMIP3 paleoclimatic models to investigate the time evolution of regional climatic conditions from the Mid-Holocene (MH) to the present. This analysis allows a comparison between the impact of the long term climate variations associated with insolation changes and the more recent effects of anthropogenic forcing on the region. The PMIP3 multimodel experiments suggest that changes in precipitation over almost all southern South America between MH and pre-industrial (PI) times due to insolation variations are significantly larger than those between PI and the present, which are due to changes in greenhouse gas concentrations. Anthropogenic forcing has been particularly intense over western Patagonia inducing reduction of precipitation in summer, autumn and winter as a consequence of progressively weaker westerly winds over the region, which have moved further poleward, between ca. 35–55°S and have become stronger south of about 50°S. Orbital variations between the MH to the PI period increased insolation over southern South America during summer and autumn inducing warmer conditions in the PI, accentuated by the effect of anthropogenic forcing during the last century. On the other hand, changes in orbital parameters from the MH to the PI period reduced insolation during winter and spring inducing colder conditions, which have been reversed by the anthropogenic forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott M, Wolfe B, Aravena R, Wolfe A, Seltzer G (2000) Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quat Sci Rev 19:1801–1820

    Article  Google Scholar 

  • Ackerley D, Renwick J (2010) The Southern Hemisphere semiannual oscillation and circulation variability during the Mid-Holocene. Clim Past 6:415–430

    Article  Google Scholar 

  • Alcalde J, Kulemeyer J (1999) The Holocene in the south-eastern region of the Province Jujuy, north-west Argentina. Quat Int 57(58):113–116

    Article  Google Scholar 

  • Ariztegui D, Gilli A, Anselmetti F, Goñi R, Belardi J, Espinosa S (2010) Lake-level changes in central Patagonia (Argentina): crossing environmental thresholds for Lateglacial and Holocene human occupation. J Quat Sci 25:1092–1099

    Article  Google Scholar 

  • Bamonte F, Mancini MV, Sottile G, Marcos MA, Gogorza C (2015) Vegetation dynamics from Lago San Martín area (Southwest Patagonia, Argentina) during the last 6,500 years. Veg Hist Archaeobot 24(2):267–277

    Article  Google Scholar 

  • Bartlein PJ et al (2011) Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim Dyn 37:775–802

    Article  Google Scholar 

  • Behling H, Pillar VDP, Bauermann SG (2005) Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the Sao Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev Palaeobot Palynol 133:235–248

    Article  Google Scholar 

  • Berger A (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Berman AL, Silvestri G, Compagnucci R (2012) Eastern Patagonia seasonal precipitation: influence of southern hemisphere circulation and links with subtropical South American precipitation. J Clim 25:6781–6795

    Article  Google Scholar 

  • Berman AL, Silvestri G, Compagnucci R (2013) On the variability of seasonal temperature in southern South America. Clim Dyn 40:1863–1878

    Article  Google Scholar 

  • Boninsegna JA et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228

    Article  Google Scholar 

  • Bosmans J, Drijfhout S, Tuenter E, Lourens L, Hilgen F, Weber S (2012) Monsoonal response to mid-holocene orbital forcing in a high resolution GCM. Clim Past 8:723–740

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3:261–277

    Article  Google Scholar 

  • Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424. doi:10.1038/nclimate1456

    Article  Google Scholar 

  • Bravo C, Rojas M, Anderson B, Mackintosh A, Sagredo E, Moreno PI (2015) Modelled glacier equilibrium line altitudes during the mid-Holocene in the southern mid-latitudes. Clim Past 11:1575–1586. doi:10.5194/cp-11-1575-2015

    Article  Google Scholar 

  • Conroy J, Overpeck J, Cole J, Shanahan T, Steinitz-Kannan M (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat Sci Rev 27:1166–1180

    Article  Google Scholar 

  • de Porras M, Maldonado A, Quintana F, Martel-Cea A, Reyes O, Méndez C (2014) Environmental and climatic changes in central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44°S). Clim Past 10:1063–1078

    Article  Google Scholar 

  • del Puerto L, García-Rodríguez LF, Inda H, Bracco R, Castiñeira C, Adams J (2006) Paleolimnological evidence of Holocene climatic changes in Lake Blanca, southern Uruguay. J Paleolimnol 36(2):151–163

    Article  Google Scholar 

  • Fletcher MS, Moreno PI (2012) Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem. Quat Int 253:32–46

    Article  Google Scholar 

  • Forman S, Tripaldi A, Ciccioli P (2014) Eolian sand sheet deposition in the San Luis paleodune field, western Argentina as an indicator of a semi-arid environment through the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 411:122–135

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Article  Google Scholar 

  • Garreaud RD, Lopez P, Minvielle M, Rojas M (2013) Large scale control on the Patagonia climate. J Clim 26:215–230

    Article  Google Scholar 

  • Gil A, Zárate M, Nemea G (2005) Mid-Holocene paleoenvironmentsand the archeological record of southern Mendoza, Argentina. Quat Int 132:81–94

    Article  Google Scholar 

  • Gilli A, Anselmetti F, Ariztegui D, Bradbury J, Kelts K, Markgraf V, McKenzie J (2001) Tracking abrupt climate change in the Southern Hemisphere: a seismic stratigraphic study of Lago Cardiel, Argentina (49°S). Terra Nova 13:443–448

    Article  Google Scholar 

  • Grosjean M, Valero-Garcés B, Geyh M, Messerli B, Schotterer U, Schreier H, Kelts K (1997) Mid- and late-Holocene limnogeology of Laguna del Negro Francisco, northern Chile, and its palaeoclimatic implications. Holocene 7(2):151–159

    Article  Google Scholar 

  • Gutiérrez M, Martínez G, Luchsinger H, Grill S, Zucol A, Hassan G, Barros M, Kaufmann C, Álvarez M (2011) Paleoenvironments in the Paso Otero locality during Late Pleistocene–Holocene (Pampean region, Argentina): an interdisciplinary approach. Quat Int 245:37–47

    Article  Google Scholar 

  • Harrison SP, Bartlein PJ, Izumi K, Li G, Annan J, Hargreaves J, Braconnot P, Kageyama M (2015) Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat Clim Change 5:735–743. doi:10.1038/nclimate2649

    Article  Google Scholar 

  • Hoffman J (1975) Maps of mean temperature and precipitation. Climatic Atlas of South America, vol 1. WMO/UNESCO, Geneva, pp 1–28

  • Jenny B, Wilhelm D, Valero-Garcés BL (2003) The Southern Westerlies in Central Chile: holocene precipitation estimates based on a water balance model for Laguna Aculeo (33°50′S). Clim Dyn 20:269–280

    Google Scholar 

  • Kageyama M et al (2013) Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model. Part II: model-data comparisons. Clim Dyn 40:2469–2495

    Article  Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate. In: Koppen W, Geiger R (eds) Handbuch der Klimatologie, vol 1. GebrBorntrager, Berlin, pp 1–44

    Google Scholar 

  • Koutavas A, Lynch-Stieglitz J (2005) Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: regional perspective and global context. In: Bradley R, Diaz H (eds) The hadley circulation: present past and future. Springer, Berlin, pp 347–369

    Google Scholar 

  • Lamy F, Kilian R, Arz H, Francois J, Kaiser J, Prange M, Steinke T (2010) Holocene changes in the position and intensity of the southern westerly wind belt. Nat Geosci 3:695–699

    Article  Google Scholar 

  • Mancini MV, Paez M, Prieto A, Stutz S, Tonello M, Vilanova I (2005) Mid-Holocene climatic variability reconstruction from pollen records (32°–52°S, Argentina). Quat Int 132:47–59

    Article  Google Scholar 

  • Marcos M, Mancini M, Dubois C (2012) Middle- to late-Holocene environmental changes in Bajo de la Quinta, NE Patagonia, inferred by palynological records and their relation to human occupation. Holocene 22:1271–1281

    Article  Google Scholar 

  • Markgraf V, Webb RS, Anderson KH, Anderson L (2002) Modern pollen/climate calibration for southern South America. Palaeogeogr Palaeoclimatol Palaeoecol 181:375–397

    Article  Google Scholar 

  • Massaferro J, Recasens C, Larocque-Tobler I, Zolitschka B, Maidana N (2013) Major lake level fluctuations and climate changes for the past 16,000 years as reflected by diatoms and chironomids preserved in the sediment of Laguna Potrok Aike, southern Patagonia. Quat Sci Rev 71:167–174

    Article  Google Scholar 

  • Melo M, Marengo J (2008) The influence of changes in orbital parameters over South American climate using the CPTEC AGCM: simulation of climate during the mid-Holocene. Holocene 18:501–516

    Article  Google Scholar 

  • Moreno PI, Francois J, Villa-Martínez R, Moy C (2010) Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology 38:727–730

    Article  Google Scholar 

  • Otto-Bliesner B, Brady E, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last glacial maximum and Holocene climate in CCSM3. J Clim 19:2526–2544

    Article  Google Scholar 

  • Pendall E, Markgraf V, White J, Dreier M (2001) Multiproxy record of Late Pleistocene–Holocene climate and vegetation changes from a peat bog in Patagonia. Quat Res 55:168–178

    Article  Google Scholar 

  • Piovano E, Ariztegui D, Córdoba F, Cioccale M, Sylvestre F (2009) Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Springer, Berlin, pp 323–351

    Chapter  Google Scholar 

  • Prado L, Wainer I, Chiessi C, Ledru MP, Turcq B (2013a) A mid-Holocene climate reconstruction for eastern South America. Clim Past 9:2117–2133

    Article  Google Scholar 

  • Prado L, Wainer I, Chiessi C (2013b) Mid-Holocene PMIP3/CMIP5 model results: intercomparison for the South American Monsoon System. Holocene 23(12):1915–1920

    Article  Google Scholar 

  • Prieto A, Blasi A, De Francesco C, Fernández C (2004) Environmental history since 11,000 14-C y B.P. of the northestern Pampas, Argentina, from alluvial sequences of the Lujan River. Quat Res 62:146–161

    Article  Google Scholar 

  • Prieto A, Romero MV, Vilanova I, Bettis IEA, Espinosa MA, Haj AE, Gomez L, Bruno LI (2014) A multi-proxy study of Holocene environmental change recorded in alluvial deposits along the southern coast of the Pampa region, Argentina. J Quat Sci 29(4):329–342

    Article  Google Scholar 

  • Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. In: Schwerdtfeger W (ed) Climates of Central and South America. World survey of Climatology. Elsevier, Amsterdam, pp 13–72

    Google Scholar 

  • Razik S, Chiessi C, Romero O, von Dobeneck T (2013) Interaction of the South American Monsoon System and the Southern Westerly Wind Belt during the last 14 kyr. Palaeogeogr Palaeoclimatol Palaeoecol 374:28–40

    Article  Google Scholar 

  • Rezende AB (2010) Espículas de esponja em sedimentos de lagoa como indicador paleoambiental no NW do Estado do Paraná. Master Dissertation, University of Guarulhos

  • Rojas M, Moreno PI (2011) Atmospheric circulation changes and neoglacial conditions in the Southern Hemisphere mid-latitudes: insights from PMIP2 simulations at 6 kyr. Clim Dyn 37:357–375

    Article  Google Scholar 

  • Satyamurti P, Nobre C, Silva Dias P (1998) South America. In: Karoly D, Vincent G (eds) Meteorology of the southern hemisphere, vol 27., Meteorological monographAmerican Meteorological Society, Boston, pp 119–139

    Google Scholar 

  • Schäbitz F (1994) Holocene climatic variations in northern Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 109:287–294

    Article  Google Scholar 

  • Schäbitz F, Wille M, Francois JP, Haberzettl T, Quintana F, Mayr Ch, Lücke A, Ohlendorf Ch, Mancini MV, Paez M, Prieto A, Zolitschka B (2013) Reconstruction of palaeoprecipitation based on pollen transfer functions: the record of the last 16 ka from Laguna Potrok Aike, southern Patagonia. Quat Sci Rev 71:175–190

    Article  Google Scholar 

  • Silva Dias P, Turcq B, Silva Dias M, Braconnot P, Jorgetti T (2009) Mid-Holocene climate of tropical South America: a model-data approach. In. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Springer, Berlin, pp 259–281

    Chapter  Google Scholar 

  • Stutz S, Tonello MS, Gonzalez Sagrario MA, Navarro D, Fontana S (2014) Historia ambiental de los lagos someros de la llanura Pampeana desde el Holoceno medio: inferencias paleoclimáticas. Lat Am J Sedimentol Basin Anal 21(2):119–138

    Google Scholar 

  • Tapia P, Fritz S, Baker P, Seltzer G, Dunbar R (2003) A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeogr Palaeoclimatol Palaeoecol 194:139–164

    Article  Google Scholar 

  • Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Tonello MS, Mancini MV, Seppä H (2009) Quantitative reconstruction of Holocene precipitation changes in southern Patagonia. Quat Res 72:410–420

    Article  Google Scholar 

  • Tonni E, Cione A, Figini A (1999) Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 147:257–281

    Article  Google Scholar 

  • Valero-Garcés B, Grosjean M, Schwalb A, Geyh M, Messerli B, Kelts K (1996) Limnogeology of Laguna Miscanti: evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile). J Paleolimnol 16(1):1–21

    Article  Google Scholar 

  • Vera C et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000

    Article  Google Scholar 

  • Villa-Martínez R, Villagrán C, Jenny B (2003) The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quat Res 60(3):284–293

    Article  Google Scholar 

  • Wanner H et al (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, vol 59, 2nd edn., International geophysics seriesElsevier Academic Press, Amsterdam

    Google Scholar 

  • Zárate M, Kemp R, Espinosa M, Ferrero L (2000) Pedosedimentary and palaeoenvironmental significance of a Holocene alluvial sequence in the southern Pampas, Argentina. Holocene 10:481–488

    Article  Google Scholar 

  • Zech W, Zech M, Zech R, Peinemann N, Morras H, Moretti L, Ogle N, Kalim R, Fuchs M, Schad P, Glaser B (2009) Late Quaternary palaeosol records from subtropical (38°S) to tropical (16°S) South America and palaeoclimatic implications. Quat Int 196:107–120

    Article  Google Scholar 

  • Zhao Y, Harrison S (2012) Mid-Holocene monsoons: a multi-model analysis of the interhemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim Dyn 39:1457–1487

    Article  Google Scholar 

  • Zolitschka B, Anselmetti F, Ariztegui D, Corbella H, Francus P, Lücke A, Maidana N, Ohlendorf C, Schäbitz F, Wastegard S (2013) Environment and climate of the last 51,000 years—new insights from the Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO). Quat Sci Rev 71:1–12

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the World Climate Research Program’s Working Group on Coupled Modeling, which is responsible for CMIP, and thank the climate modeling groups (listed in Sect. 2) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Comments and suggestions provided by three anonymous reviewers were very helpful in improving this paper. Ana Laura Berman and Gabriel Silvestri were financed by Grants CONICET-PIP 11220120100526CO and AGENCIA-MINCYT-PICT-2013-0043. Maisa Rojas acknowledges support from Grants FONDECYT #1131055, NC120066 and FONDAP-CONICYT 15110009. Marcela Tonello was supported by Grant UNMdP EXA 678/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel E. Silvestri.

Additional information

Ana Laura Berman, Gabriel E. Silvestri, Maisa Rojas and Marcela S. Tonello are co-first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berman, A.L., Silvestri, G.E., Rojas, M. et al. Accelerated greenhouse gases versus slow insolation forcing induced climate changes in southern South America since the Mid-Holocene. Clim Dyn 48, 387–404 (2017). https://doi.org/10.1007/s00382-016-3081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3081-z

Keywords

Navigation