Advertisement

Climate Dynamics

, Volume 48, Issue 1–2, pp 387–404 | Cite as

Accelerated greenhouse gases versus slow insolation forcing induced climate changes in southern South America since the Mid-Holocene

  • Ana Laura Berman
  • Gabriel E. SilvestriEmail author
  • Maisa Rojas
  • Marcela S. Tonello
Article

Abstract

This paper is a pioneering analysis of past climates in southern South America combining multiproxy reconstructions and the state-of-the-art CMIP5/PMIP3 paleoclimatic models to investigate the time evolution of regional climatic conditions from the Mid-Holocene (MH) to the present. This analysis allows a comparison between the impact of the long term climate variations associated with insolation changes and the more recent effects of anthropogenic forcing on the region. The PMIP3 multimodel experiments suggest that changes in precipitation over almost all southern South America between MH and pre-industrial (PI) times due to insolation variations are significantly larger than those between PI and the present, which are due to changes in greenhouse gas concentrations. Anthropogenic forcing has been particularly intense over western Patagonia inducing reduction of precipitation in summer, autumn and winter as a consequence of progressively weaker westerly winds over the region, which have moved further poleward, between ca. 35–55°S and have become stronger south of about 50°S. Orbital variations between the MH to the PI period increased insolation over southern South America during summer and autumn inducing warmer conditions in the PI, accentuated by the effect of anthropogenic forcing during the last century. On the other hand, changes in orbital parameters from the MH to the PI period reduced insolation during winter and spring inducing colder conditions, which have been reversed by the anthropogenic forcing.

Keywords

Mid-Holocene PMIP3 models natural forcing Anthropogenic forcing South America Patagonia 

Notes

Acknowledgments

We acknowledge the World Climate Research Program’s Working Group on Coupled Modeling, which is responsible for CMIP, and thank the climate modeling groups (listed in Sect. 2) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Comments and suggestions provided by three anonymous reviewers were very helpful in improving this paper. Ana Laura Berman and Gabriel Silvestri were financed by Grants CONICET-PIP 11220120100526CO and AGENCIA-MINCYT-PICT-2013-0043. Maisa Rojas acknowledges support from Grants FONDECYT #1131055, NC120066 and FONDAP-CONICYT 15110009. Marcela Tonello was supported by Grant UNMdP EXA 678/14.

References

  1. Abbott M, Wolfe B, Aravena R, Wolfe A, Seltzer G (2000) Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quat Sci Rev 19:1801–1820CrossRefGoogle Scholar
  2. Ackerley D, Renwick J (2010) The Southern Hemisphere semiannual oscillation and circulation variability during the Mid-Holocene. Clim Past 6:415–430CrossRefGoogle Scholar
  3. Alcalde J, Kulemeyer J (1999) The Holocene in the south-eastern region of the Province Jujuy, north-west Argentina. Quat Int 57(58):113–116CrossRefGoogle Scholar
  4. Ariztegui D, Gilli A, Anselmetti F, Goñi R, Belardi J, Espinosa S (2010) Lake-level changes in central Patagonia (Argentina): crossing environmental thresholds for Lateglacial and Holocene human occupation. J Quat Sci 25:1092–1099CrossRefGoogle Scholar
  5. Bamonte F, Mancini MV, Sottile G, Marcos MA, Gogorza C (2015) Vegetation dynamics from Lago San Martín area (Southwest Patagonia, Argentina) during the last 6,500 years. Veg Hist Archaeobot 24(2):267–277CrossRefGoogle Scholar
  6. Bartlein PJ et al (2011) Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim Dyn 37:775–802CrossRefGoogle Scholar
  7. Behling H, Pillar VDP, Bauermann SG (2005) Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the Sao Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev Palaeobot Palynol 133:235–248CrossRefGoogle Scholar
  8. Berger A (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  9. Berman AL, Silvestri G, Compagnucci R (2012) Eastern Patagonia seasonal precipitation: influence of southern hemisphere circulation and links with subtropical South American precipitation. J Clim 25:6781–6795CrossRefGoogle Scholar
  10. Berman AL, Silvestri G, Compagnucci R (2013) On the variability of seasonal temperature in southern South America. Clim Dyn 40:1863–1878CrossRefGoogle Scholar
  11. Boninsegna JA et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228CrossRefGoogle Scholar
  12. Bosmans J, Drijfhout S, Tuenter E, Lourens L, Hilgen F, Weber S (2012) Monsoonal response to mid-holocene orbital forcing in a high resolution GCM. Clim Past 8:723–740CrossRefGoogle Scholar
  13. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  14. Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424. doi: 10.1038/nclimate1456 CrossRefGoogle Scholar
  15. Bravo C, Rojas M, Anderson B, Mackintosh A, Sagredo E, Moreno PI (2015) Modelled glacier equilibrium line altitudes during the mid-Holocene in the southern mid-latitudes. Clim Past 11:1575–1586. doi: 10.5194/cp-11-1575-2015 CrossRefGoogle Scholar
  16. Conroy J, Overpeck J, Cole J, Shanahan T, Steinitz-Kannan M (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat Sci Rev 27:1166–1180CrossRefGoogle Scholar
  17. de Porras M, Maldonado A, Quintana F, Martel-Cea A, Reyes O, Méndez C (2014) Environmental and climatic changes in central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44°S). Clim Past 10:1063–1078CrossRefGoogle Scholar
  18. del Puerto L, García-Rodríguez LF, Inda H, Bracco R, Castiñeira C, Adams J (2006) Paleolimnological evidence of Holocene climatic changes in Lake Blanca, southern Uruguay. J Paleolimnol 36(2):151–163CrossRefGoogle Scholar
  19. Fletcher MS, Moreno PI (2012) Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem. Quat Int 253:32–46CrossRefGoogle Scholar
  20. Forman S, Tripaldi A, Ciccioli P (2014) Eolian sand sheet deposition in the San Luis paleodune field, western Argentina as an indicator of a semi-arid environment through the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 411:122–135CrossRefGoogle Scholar
  21. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195CrossRefGoogle Scholar
  22. Garreaud RD, Lopez P, Minvielle M, Rojas M (2013) Large scale control on the Patagonia climate. J Clim 26:215–230CrossRefGoogle Scholar
  23. Gil A, Zárate M, Nemea G (2005) Mid-Holocene paleoenvironmentsand the archeological record of southern Mendoza, Argentina. Quat Int 132:81–94CrossRefGoogle Scholar
  24. Gilli A, Anselmetti F, Ariztegui D, Bradbury J, Kelts K, Markgraf V, McKenzie J (2001) Tracking abrupt climate change in the Southern Hemisphere: a seismic stratigraphic study of Lago Cardiel, Argentina (49°S). Terra Nova 13:443–448CrossRefGoogle Scholar
  25. Grosjean M, Valero-Garcés B, Geyh M, Messerli B, Schotterer U, Schreier H, Kelts K (1997) Mid- and late-Holocene limnogeology of Laguna del Negro Francisco, northern Chile, and its palaeoclimatic implications. Holocene 7(2):151–159CrossRefGoogle Scholar
  26. Gutiérrez M, Martínez G, Luchsinger H, Grill S, Zucol A, Hassan G, Barros M, Kaufmann C, Álvarez M (2011) Paleoenvironments in the Paso Otero locality during Late Pleistocene–Holocene (Pampean region, Argentina): an interdisciplinary approach. Quat Int 245:37–47CrossRefGoogle Scholar
  27. Harrison SP, Bartlein PJ, Izumi K, Li G, Annan J, Hargreaves J, Braconnot P, Kageyama M (2015) Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat Clim Change 5:735–743. doi: 10.1038/nclimate2649 CrossRefGoogle Scholar
  28. Hoffman J (1975) Maps of mean temperature and precipitation. Climatic Atlas of South America, vol 1. WMO/UNESCO, Geneva, pp 1–28Google Scholar
  29. Jenny B, Wilhelm D, Valero-Garcés BL (2003) The Southern Westerlies in Central Chile: holocene precipitation estimates based on a water balance model for Laguna Aculeo (33°50′S). Clim Dyn 20:269–280Google Scholar
  30. Kageyama M et al (2013) Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model. Part II: model-data comparisons. Clim Dyn 40:2469–2495CrossRefGoogle Scholar
  31. Köppen W (1936) Das geographische System der Klimate. In: Koppen W, Geiger R (eds) Handbuch der Klimatologie, vol 1. GebrBorntrager, Berlin, pp 1–44Google Scholar
  32. Koutavas A, Lynch-Stieglitz J (2005) Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: regional perspective and global context. In: Bradley R, Diaz H (eds) The hadley circulation: present past and future. Springer, Berlin, pp 347–369Google Scholar
  33. Lamy F, Kilian R, Arz H, Francois J, Kaiser J, Prange M, Steinke T (2010) Holocene changes in the position and intensity of the southern westerly wind belt. Nat Geosci 3:695–699CrossRefGoogle Scholar
  34. Mancini MV, Paez M, Prieto A, Stutz S, Tonello M, Vilanova I (2005) Mid-Holocene climatic variability reconstruction from pollen records (32°–52°S, Argentina). Quat Int 132:47–59CrossRefGoogle Scholar
  35. Marcos M, Mancini M, Dubois C (2012) Middle- to late-Holocene environmental changes in Bajo de la Quinta, NE Patagonia, inferred by palynological records and their relation to human occupation. Holocene 22:1271–1281CrossRefGoogle Scholar
  36. Markgraf V, Webb RS, Anderson KH, Anderson L (2002) Modern pollen/climate calibration for southern South America. Palaeogeogr Palaeoclimatol Palaeoecol 181:375–397CrossRefGoogle Scholar
  37. Massaferro J, Recasens C, Larocque-Tobler I, Zolitschka B, Maidana N (2013) Major lake level fluctuations and climate changes for the past 16,000 years as reflected by diatoms and chironomids preserved in the sediment of Laguna Potrok Aike, southern Patagonia. Quat Sci Rev 71:167–174CrossRefGoogle Scholar
  38. Melo M, Marengo J (2008) The influence of changes in orbital parameters over South American climate using the CPTEC AGCM: simulation of climate during the mid-Holocene. Holocene 18:501–516CrossRefGoogle Scholar
  39. Moreno PI, Francois J, Villa-Martínez R, Moy C (2010) Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology 38:727–730CrossRefGoogle Scholar
  40. Otto-Bliesner B, Brady E, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last glacial maximum and Holocene climate in CCSM3. J Clim 19:2526–2544CrossRefGoogle Scholar
  41. Pendall E, Markgraf V, White J, Dreier M (2001) Multiproxy record of Late Pleistocene–Holocene climate and vegetation changes from a peat bog in Patagonia. Quat Res 55:168–178CrossRefGoogle Scholar
  42. Piovano E, Ariztegui D, Córdoba F, Cioccale M, Sylvestre F (2009) Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Springer, Berlin, pp 323–351CrossRefGoogle Scholar
  43. Prado L, Wainer I, Chiessi C, Ledru MP, Turcq B (2013a) A mid-Holocene climate reconstruction for eastern South America. Clim Past 9:2117–2133CrossRefGoogle Scholar
  44. Prado L, Wainer I, Chiessi C (2013b) Mid-Holocene PMIP3/CMIP5 model results: intercomparison for the South American Monsoon System. Holocene 23(12):1915–1920CrossRefGoogle Scholar
  45. Prieto A, Blasi A, De Francesco C, Fernández C (2004) Environmental history since 11,000 14-C y B.P. of the northestern Pampas, Argentina, from alluvial sequences of the Lujan River. Quat Res 62:146–161CrossRefGoogle Scholar
  46. Prieto A, Romero MV, Vilanova I, Bettis IEA, Espinosa MA, Haj AE, Gomez L, Bruno LI (2014) A multi-proxy study of Holocene environmental change recorded in alluvial deposits along the southern coast of the Pampa region, Argentina. J Quat Sci 29(4):329–342CrossRefGoogle Scholar
  47. Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. In: Schwerdtfeger W (ed) Climates of Central and South America. World survey of Climatology. Elsevier, Amsterdam, pp 13–72Google Scholar
  48. Razik S, Chiessi C, Romero O, von Dobeneck T (2013) Interaction of the South American Monsoon System and the Southern Westerly Wind Belt during the last 14 kyr. Palaeogeogr Palaeoclimatol Palaeoecol 374:28–40CrossRefGoogle Scholar
  49. Rezende AB (2010) Espículas de esponja em sedimentos de lagoa como indicador paleoambiental no NW do Estado do Paraná. Master Dissertation, University of GuarulhosGoogle Scholar
  50. Rojas M, Moreno PI (2011) Atmospheric circulation changes and neoglacial conditions in the Southern Hemisphere mid-latitudes: insights from PMIP2 simulations at 6 kyr. Clim Dyn 37:357–375CrossRefGoogle Scholar
  51. Satyamurti P, Nobre C, Silva Dias P (1998) South America. In: Karoly D, Vincent G (eds) Meteorology of the southern hemisphere, vol 27., Meteorological monographAmerican Meteorological Society, Boston, pp 119–139Google Scholar
  52. Schäbitz F (1994) Holocene climatic variations in northern Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 109:287–294CrossRefGoogle Scholar
  53. Schäbitz F, Wille M, Francois JP, Haberzettl T, Quintana F, Mayr Ch, Lücke A, Ohlendorf Ch, Mancini MV, Paez M, Prieto A, Zolitschka B (2013) Reconstruction of palaeoprecipitation based on pollen transfer functions: the record of the last 16 ka from Laguna Potrok Aike, southern Patagonia. Quat Sci Rev 71:175–190CrossRefGoogle Scholar
  54. Silva Dias P, Turcq B, Silva Dias M, Braconnot P, Jorgetti T (2009) Mid-Holocene climate of tropical South America: a model-data approach. In. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Springer, Berlin, pp 259–281CrossRefGoogle Scholar
  55. Stutz S, Tonello MS, Gonzalez Sagrario MA, Navarro D, Fontana S (2014) Historia ambiental de los lagos someros de la llanura Pampeana desde el Holoceno medio: inferencias paleoclimáticas. Lat Am J Sedimentol Basin Anal 21(2):119–138Google Scholar
  56. Tapia P, Fritz S, Baker P, Seltzer G, Dunbar R (2003) A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeogr Palaeoclimatol Palaeoecol 194:139–164CrossRefGoogle Scholar
  57. Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  58. Tonello MS, Mancini MV, Seppä H (2009) Quantitative reconstruction of Holocene precipitation changes in southern Patagonia. Quat Res 72:410–420CrossRefGoogle Scholar
  59. Tonni E, Cione A, Figini A (1999) Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 147:257–281CrossRefGoogle Scholar
  60. Valero-Garcés B, Grosjean M, Schwalb A, Geyh M, Messerli B, Kelts K (1996) Limnogeology of Laguna Miscanti: evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile). J Paleolimnol 16(1):1–21CrossRefGoogle Scholar
  61. Vera C et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000CrossRefGoogle Scholar
  62. Villa-Martínez R, Villagrán C, Jenny B (2003) The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quat Res 60(3):284–293CrossRefGoogle Scholar
  63. Wanner H et al (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  64. Wilks DS (2006) Statistical methods in the atmospheric sciences, vol 59, 2nd edn., International geophysics seriesElsevier Academic Press, AmsterdamGoogle Scholar
  65. Zárate M, Kemp R, Espinosa M, Ferrero L (2000) Pedosedimentary and palaeoenvironmental significance of a Holocene alluvial sequence in the southern Pampas, Argentina. Holocene 10:481–488CrossRefGoogle Scholar
  66. Zech W, Zech M, Zech R, Peinemann N, Morras H, Moretti L, Ogle N, Kalim R, Fuchs M, Schad P, Glaser B (2009) Late Quaternary palaeosol records from subtropical (38°S) to tropical (16°S) South America and palaeoclimatic implications. Quat Int 196:107–120CrossRefGoogle Scholar
  67. Zhao Y, Harrison S (2012) Mid-Holocene monsoons: a multi-model analysis of the interhemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim Dyn 39:1457–1487CrossRefGoogle Scholar
  68. Zolitschka B, Anselmetti F, Ariztegui D, Corbella H, Francus P, Lücke A, Maidana N, Ohlendorf C, Schäbitz F, Wastegard S (2013) Environment and climate of the last 51,000 years—new insights from the Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO). Quat Sci Rev 71:1–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ana Laura Berman
    • 1
  • Gabriel E. Silvestri
    • 1
    Email author
  • Maisa Rojas
    • 2
  • Marcela S. Tonello
    • 3
  1. 1.Centro de Investigaciones del Mar y la Atmósfera/CONICET-UBA, UMI IFAECI/CNRSBuenos AiresArgentina
  2. 2.Departamento de GeofísicaUniversidad de ChileSantiagoChile
  3. 3.Laboratorio de Paleoecologia y Palinologia/Ecología y Paleoecologia de Ambientes Acuáticos Continentales, Instituto de Investigaciones Marinas y Costeras (IIMyC)CONICET-UNMdPMar del PlataArgentina

Personalised recommendations