Skip to main content
Log in

Interannual climate variability change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 last millennium simulations

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, we analyzed numerical experiments undertaken by 10 climate models participating in PMIP3 (Paleoclimate Modelling Intercomparison Project Phase 3) to examine the changes in interannual temperature variability and coefficient of variation (CV) of interannual precipitation in the warm period of the Medieval Climate Anomaly (MCA) and the cold period of the Little Ice Age (LIA). With respect to the past millennium period, the MCA temperature variability decreases by 2.0% on average over the globe, and most of the decreases occur in low latitudes. In the LIA, temperature variability increases by a global average of 0.6%, which occurs primarily in the high latitudes of Eurasia and the western Pacific. For the CV of interannual precipitation, regional-scale changes are more significant than changes at the global scale, with a pattern of increased (decreased) CV in the midlatitudes of Eurasia and the northwestern Pacific in the MCA (LIA). The CV change ranges from −7.0% to 4.3% (from −6.3% to 5.4%), with a global average of −0.5% (−0.07%) in the MCA (LIA). Also, the variability changes are considerably larger in December–January–February with respect to both temperature and precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, M., and Coauthors, 2013: Continental-scale temperature variability during the past two millennia. Nature Geo., 6, 339–346.

    Article  Google Scholar 

  • Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas, 2007: Solar influence on climate during the past millennium: Results from transient simulations with the NCAR climate system model. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 3713–3718.

    Article  Google Scholar 

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27(5), 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bard, E., and M. Frank, 2006: Climate change and solar variability: What’s new under the sun? Earth and Planetary Science Letters, 248(1–2), 1–14.

    Article  Google Scholar 

  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55(4), 477–493.

    Article  Google Scholar 

  • Bothe, O., J. H. Jungclaus, and D. Zanchettin, 2013: Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble. Climate of the Past, 9(6), 2471–2487.

    Article  Google Scholar 

  • Braconnot, P., and Coauthors, 2012: Evaluation of climate models using palaeoclimatic data. Nature Climate Change, 2(6), 417–424.

    Article  Google Scholar 

  • Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D.W. Stahle, 2004: Long-term aridity changes in the western United States. Science, 306(5698), 1015–1018.

    Article  Google Scholar 

  • Cook, E. R., P. J. Krusic, K. J. Anchukaitis, B. M. Buckley, T. Nakatsuka, and M. Sano, 2013: Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Climate Dyn., 41(11–12), 2957–2972.

    Article  Google Scholar 

  • Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289(5477), 270–277.

    Article  Google Scholar 

  • Dufresne, J. -L., and Coauthors, 2012: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40(9–10), 2123–2165.

    Google Scholar 

  • Fan, K., Z. Q. Xu, and B. Q. Tian, 2014: Has the intensity of the interannual variability in summer rainfall over South China remarkably increased? Meteor. Atmos. Phys., 124(1–2), 23–32.

    Article  Google Scholar 

  • Fernández-Donado, L., and Coauthors, 2013: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Climate of the Past, 9(1), 393–421.

    Article  Google Scholar 

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24(19), 4973–4991.

    Article  Google Scholar 

  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572–597.

    Article  Google Scholar 

  • Goosse, H., H. Renssen, A. Timmermann, and R. S. Bradley, 2005: Internal and forced climate variability during the last millennium: A model-data comparison using ensemble simulations. Quaternary Science Reviews, 24(12–13), 1345–1360.

    Article  Google Scholar 

  • Goosse, H., E. Crespin, S. Dubinkina, M. F. Loutre, M. E. Mann, H. Renssen, Y. Sallaz-Damaz, and D. Shindell, 2012: The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly”. Climate Dyn., 39(12), 2847–2866.

    Article  Google Scholar 

  • Gordon, C., and Coauthors, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168.

    Article  Google Scholar 

  • Gupta, A. S., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26(21), 8597–8615.

    Article  Google Scholar 

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol., 34(3), 623–642.

    Article  Google Scholar 

  • Haywood, J. M., A. J. N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nature Climate Change, 3, 660–665.

    Article  Google Scholar 

  • Hegerl, G. C., T. J. Crowley, S. K. Baum, K.-Y. Kim, and W. T. Hyde, 2003: Detection of volcanic, solar and greenhouse gas signals in paleo-reconstructions of northern hemispheric temperature. Geophys. Res. Lett., 30(5), doi: 10.1029/2002GL016635.

    Google Scholar 

  • Hunt, B. G., 1998: Natural climatic variability as an explanation for historical climatic fluctuations. Climatic Change, 38(2), 133–157.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

  • Jiang, D. B., and Coauthors, 2015: Paleoclimate modeling in China: A review. Adv. Atmos. Sci., 32(2), 250–275, doi: 10.1007/s00376-014-0002-0.

    Article  Google Scholar 

  • Jiang, D. B., Y. Sui, and X. M. Lang, 2016: Timing and associated climate change of a 2°C global warming. Int. J. Climatol., 36(14), 4512–4522.

    Article  Google Scholar 

  • Jones, P. D., and M. E. Mann, 2004: Climate over past millennia. Rev. Geophys., 42(2), doi: 10.1029/2003RG000143.

    Google Scholar 

  • Juckes, M. N., and Coauthors, 2007: Millennial temperature reconstruction intercomparison and evaluation. Climate of the Past, 3(4), 591–609.

    Article  Google Scholar 

  • Katz, R.W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21(3), 289–302.

    Article  Google Scholar 

  • Landrum, L., B. L. Otto-Bliesner, E. R. Wahl, A. Conley, P. J. Lawrence, N. Rosenbloom, and H. Y. Teng, 2013: Last millennium climate and its variability in CCSM4. J. Climate, 26(4), 1085–1111.

    Article  Google Scholar 

  • Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Y. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep., 6, 24331.

    Article  Google Scholar 

  • Liu, J., B. Wang, H. L. Wang, X. Y. Kuang, and R. Y. Ti, 2011: Forced response of the East Asian summer rainfall over the past millennium: Results from a coupled model simulation. Climate Dyn., 36, 323–336.

    Article  Google Scholar 

  • Ljungqvist, F. C., P. J. Krusic, G. Brattström, and H. S. Sundqvist, 2012: Northern Hemisphere temperature patterns in the last 12 centuries. Climate of the Past, 8(1), 227–249.

    Article  Google Scholar 

  • Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner, 2004: European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303(5663), 1499–1503.

    Article  Google Scholar 

  • Mann, M. E., 2007: Climate over the past two millennia. Annual Review of Earth and Planetary Sciences, 35(1), 111–136.

    Article  Google Scholar 

  • Mann, M. E., E. Gille, R. S. Bradley, M. K. Hughes, J. Overpeck, F. T. Keimig, and W. Gross, 2000: Global temperature patterns in past centuries: An interactive presentation. Earth Interactions, 4(4), 1–29.

    Article  Google Scholar 

  • Mann, M. E., and Coauthors, 2009: Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 1256–1260.

    Article  Google Scholar 

  • Masson-Delmotte, V., and Coauthors, 2006: Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Climate Dyn., 26(5), 513–529.

    Article  Google Scholar 

  • Miller, G. H., and Coauthors, 2012: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by seaice/ocean feedbacks. Geophys. Res. Lett., 39, L02708, doi: 10.1029/2011GL050168.

    Article  Google Scholar 

  • Neukom, R., and Coauthors, 2014: Inter-hemispheric temperature variability over the past millennium. Nature Clim. Change, 4(5), 362–367.

    Article  Google Scholar 

  • Phipps, S. J., L. D. Rotstayn, H. B. Gordon, J. L. Roberts, A. C. Hirst, and W. F. Budd, 2011: The CSIRO Mk3L climate system model version 1.0—Part 1: Description and evaluation. Geoscientific Model Development, 4, 483–509.

    Article  Google Scholar 

  • Ren, G. Y., 1998: Pollen evidence for increased summer rainfall in the Medieval Warm Period at Maili, northeast China. Geophys. Res. Lett., 25(11), 1931–1934.

    Article  Google Scholar 

  • Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J. Climate, 19, 153–192.

    Article  Google Scholar 

  • Schmidt, G. A., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geoscientific Model Development, 4(1), 33–45.

    Article  Google Scholar 

  • Schneider, D. P., C. M. Ammann, B. L. Otto-Bliesner, and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, doi: 10.1029/2008JD011222.

    Article  Google Scholar 

  • Swingedouw, D., L. Terray, C. Cassou, A. Voldoire, D. Salas-Mélia, and J. Servonnat, 2011: Natural forcing of climate during the last millennium: Fingerprint of solar variability. Climate Dyn., 36(7–8), 1349–1364.

    Article  Google Scholar 

  • Tan, L. C., Y. J. Cai, H. Cheng, Z. S. An, and R. L. Edwards, 2009: Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(3–4), 432–439.

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106(D7), 7183–7192.

    Article  Google Scholar 

  • Wu, T. W., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725–744.

    Article  Google Scholar 

  • Yang, B., C. Qin, J. L. Wang, M. H. He, T. M. Melvin, T. J. Osborn, and K. R. Briffa, 2014: A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 2903–2908.

    Article  Google Scholar 

  • Yang, K. Q., and D. B. Jiang, 2015: Interannual climate variability of the past millennium from simulations. Atmos. Ocean. Sci. Lett., 8(3), 160–165.

    Article  Google Scholar 

  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3–Model description and basic performance. J. Meteor. Soc. Japan, 90A, 23–64.

    Article  Google Scholar 

  • Zhou, T. J., B. Li, W. M. Man, L. X. Zhang, and J. Zhang, 2011: A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. Chinese Sci. Bull., 56, 3028–3041.

    Article  Google Scholar 

  • Zorita, E., J. F. González-Rouco, H. Von Storch, J. P. Montávez, and F. Valero, 2005: Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys. Res. Lett., 32(8), doi: 10.1029/2004GL021563.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the climate modeling groups (listed in Table 1) for producing and sharing their model outputs. This research was supported by the National Natural Science Foundation of China (Grant No. 41421004) and the National Key Research and Development Program of China (Grant No. 2016YFA0600704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Jiang, D. Interannual climate variability change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 last millennium simulations. Adv. Atmos. Sci. 34, 497–508 (2017). https://doi.org/10.1007/s00376-016-6075-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6075-1

Key words

Navigation