Skip to main content

Advertisement

Log in

Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Internal variability of the Atlantic subpolar gyre is investigated in a 600 years control simulation of a comprehensive coupled climate model. The subpolar gyre shows irregular oscillations of decadal time scale with most spectral power between 15 and 20 years. Positive and negative feedback mechanisms act successively on the circulation leading to an internal oscillation. This involves periodically enhanced deep convection in the subpolar gyre center and intermittently enhanced air-sea thermal coupling. As a result, anomalies of the large-scale atmospheric circulation can be transferred to the ocean on the ocean’s intrinsic time scale, exciting the oscillator stochastically. A detailed understanding of oscillatory mechanisms of the ocean and their sensitivity to atmospheric forcing holds considerable potential for decadal predictions as well as for the interpretation of proxy data records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alley R, Áugústsdóttir AM (2005) The 8k event: cause and consequences of a major Holocene abrupt climate change. Q Sci Rev 24:1123–1149

    Article  Google Scholar 

  • Bailey DA, Rhines PB, Häkkinen S (2005) Formation and pathways of North Atlantic Deep Water in a coupled ice–ocean model of the Arctic–North Atlantic Oceans. Clim Dyn 25:497–516

    Article  Google Scholar 

  • Beckmann A (1998) The representation of bottom boundary layer processes in numerical ocean circulation models. In: Chassignet EP, Verron J (eds) Ocean modeling and parametrization. pp 135–154 Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Böning C, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33:L21S01

    Article  Google Scholar 

  • Born A, Kageyama M, Nisancioglu KH (2010) Warm Nordic Seas delayed glacial inception in Scandinavia. Clim Past 6:817–826

    Article  Google Scholar 

  • Born A, Levermann A (2010) The 8.2 ka event: abrupt transition of the subpolar gyre toward a modern North Atlantic circulation. Geochem Geophy Geosyst 11:Q06011

    Article  Google Scholar 

  • Born A, Levermann A, Mignot J (2009) Sensitivity of the Atlantic ocean circulation to a hydraulic overflow parameterisation in a coarse resolution model: response of the subpolar gyre. Ocean Model 27(3-4):130–142

    Article  Google Scholar 

  • Born A, Nisancioglu KH, Braconnot P (2010) Sea ice induced changes in ocean circulation during the Eemian. Clim Dyn 35(7):1361

    Article  Google Scholar 

  • Born A, Nisancioglu KH, Risebrobakken B (2011) Late Eemian warming in the Nordic Seas as seen in proxy data and climate models. Paleoceanography (in press)

  • Bower A, Cann BL, Rossby T, Zenk W, Gouldk J, Speer K, Richardson P, Prater M, Zhang H-M (2002) Directly measured mid-depth circulation in the northeastern North Atlantic Ocean. Nature 419:603–607

    Article  Google Scholar 

  • Braconnot P, Marzin C, Grégoire L, Mosquet E, Marti O (2008) Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Clim Past 4:281–294

    Article  Google Scholar 

  • Cane MA, Kamenkovich VM, Krupitsky A (1998) On the utility and disutility of JEBAR. J Phys Oceanogr 28:519–526

    Article  Google Scholar 

  • Curry R, McCartney M, Joyce T (1998) Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature 391:575–577

    Article  Google Scholar 

  • Danabasoglu G (2008) On multidecadal variability of the atlantic meridional overturning circulation in the community climate model version 3. J Clim 21:5524–5544

    Article  Google Scholar 

  • Delworth T, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Deshayes J, Straneo F, Spall MA (2009) Mechanisms of variability in a convective basin. J Mar Res 67(3):273–303

    Article  Google Scholar 

  • Dijkstra HA, te Raa L, Schmeits M, Gerrits J (2006) On the physics of the Atlantic Multidecadal Oscillation. Ocean Dyn 56:36–50

    Article  Google Scholar 

  • Eden C, Greatbatch R (2003) A damped decadal oscillation in the north atlantic climate system. J Clim 16:4043–4060

    Article  Google Scholar 

  • Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic oscillation (1865–1997). J Clim 14:676–691

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280

    Article  Google Scholar 

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646

    Article  Google Scholar 

  • Fichefet T, Maqueda MAM (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268

    Article  Google Scholar 

  • Fratantoni DM (2001) North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. J Geophys Res 106:22,067–22,093

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Simulation of rapid glacial climate changes in a coupled climate model. Nature 409:153–158

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in Ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Goddard L, Baethgen W, Kirtman B, Meehl G (2009) The urgent need for improved models and predictions. EOS 90:343

    Article  Google Scholar 

  • Greatbatch RJ, Fanning AF, Goulding AD, Levitus S (1991) A diagnosis of interpentadal circulation changes in the North Atlantic. J Geophys Res 96:22,009–22,023

    Google Scholar 

  • Guemas V, Salas-Melia D (2008) Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. Part I : a mechanism governing the variability of ocean convection in a preindustrial experiment. Clim Dyn 31:29–48

    Article  Google Scholar 

  • Häkkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559

    Article  Google Scholar 

  • Hasselmann K (1976) Stochastic climate models Part I. Theory. Tellus 28(6):473–485

    Article  Google Scholar 

  • Hátún H, Payne MR, Jacobsen JA (2009) The North Atlantic subpolar gyre regulates the spawning distribution of blue whiting (Micromesistius poutassou). Can J Fish Aquat Sci 66(5):759–770

    Google Scholar 

  • Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844

    Article  Google Scholar 

  • Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J, Fairhead L, Filiberti M, Friedlingstein P, Grandpeix J, Krinner G, Levan P, Li Z, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7-8):787–813

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Keenlyside N S, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudre N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere—biosphere system. Glob Biogeochem Cycles 19(1):GB1015

    Article  Google Scholar 

  • Kuijpers A, Malmgren BA, Seidenkrantz M-S (2009) Termination of the Medieval Warm Period: linking subpolar and tropical North Atlantic circulation changes to ENSO. PAGES News 17(2):76–77

    Google Scholar 

  • Kwon Y-O, Frankignoul C (2011) Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Clim Dyn (online)

  • Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of the Atlantic sector climate on decadal time scales. J Clim 19((23):5971–5987

    Article  Google Scholar 

  • Levermann A, Born A (2007) Bistability of the Atlantic subpolar gyre in a coarse-resolution model. Geophys Res Lett 34:L24605

    Article  Google Scholar 

  • Lohmann K, Drange H, Bentsen M (2009) A possible mechanism for the strong weakening of the North Atlantic subpolar gyre in the mid-1990s. Geophys Res Lett 36:L15602

    Article  Google Scholar 

  • Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Lévy C (1997) OPA version 8.1 ocean general circulation model reference manual. Institut Pierre-Simon Laplace, Note du Pôle de modélisation no 11

  • Marti O, Braconnot P, Dufresne J-L, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols M-A, Friedlingstein P, Goosse H, Grandpeix J-Y, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26

    Article  Google Scholar 

  • Mellor G (1999) Comments on “on the utility and disutility of JEBAR”. J Phys Oceanogr 29:2117–2118

    Article  Google Scholar 

  • Mellor G, Mechoso C, Keto E (1982) A diagnostic calculation of the general circulation of the Atlantic Ocean. Deep-Sea Res 29:1171–1192

    Article  Google Scholar 

  • Mellor GL (1996) Introduction to physical oceanography. Springer, New York

    Google Scholar 

  • Mengel M, Levermann A, Schleussner C, Born A (2011) Enhanced subpolar-gyre variability through baroclinic threshold in the Atlantic (submitted)

  • Mertz G, Wright DG (1992) Interpretations of the JEBAR Term. J Phys Oceanogr 22:301–305

    Article  Google Scholar 

  • Mignot J, Frankignoul C (2009) Local and remote impacts of a tropical Atlantic salinity anomaly. Clim Dyn (online)

  • Montoya M, Born A, Levermann A (2011) Reversed north atlantic gyre dynamics in glacial climate. Clim Dyn 36(5–6):1107–1118

    Article  Google Scholar 

  • Montoya M, Griesel A, Levermann A, Mignot J, Hofmann M, Ganopolski A, Rahmstorf S (2005) The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions. Clim Dyn 25:237–263

    Article  Google Scholar 

  • Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62

    Article  Google Scholar 

  • Myers PG, Fanning AF, Weaver AJ (1996) JEBAR, bottom pressure torque, and gulf stream separation. J Phys Oceanogr 26:671–683

    Article  Google Scholar 

  • Orvik KA, Niiler P (2002) Major pathways of Atlantic water in the northern North Atlantic and nordic seas toward Arctic. Geophys Res Lett 29:1896

    Article  Google Scholar 

  • Penduff T, Barnier B, de Verdière AC (2000) Self-adapting open boundaries for a sigma coordinate model of the eastern North Atlantic. J Geophys Res 105:11,279–11,298

    Article  Google Scholar 

  • Pohlmann H, Botzet M, Latif M, Wild M, Tschuck P (2004) Estimating the long-term predictability potential of a coupled AOGCM. J Clim 17:4463–4472

    Article  Google Scholar 

  • Read J (2001) Water masses and circulation of the northeast Atlantic subpolar gyre. Prog Oceanogr 48:461–510

    Article  Google Scholar 

  • Ren J, Jiang H, Seidenkrantz M-S, Kuijpers A (2009) A diatom-based reconstruction of Early Holocene hydrographic and climatic change in a southwest Greenland fjord. Mar Micropaleontol 70:166–176

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105:23927–23942

    Article  Google Scholar 

  • Sachs JP (2007) Cooling of Northwest Atlantic slope waters during the Holocene. Geophys Res Lett 34:L03609

    Article  Google Scholar 

  • Sarkisyan AS, Ivanov VF (1971) Joint effect of baroclinicity and bottom relief as an important factor in the dynamics of sea currents. Izvestiya Akademii Nauk SSSR Fizika Atmosfery i Okeana 7(2):173–188

    Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global circulation model. Science 317:796–799

    Article  Google Scholar 

  • Spall MA (2004) Boundary currents and watermass transformation in marginal seas. J Phys Oceanogr 34:1197–1213

    Article  Google Scholar 

  • Spall MA (2008) Low-frequency interaction between horizontal and overturning gyres in the ocean. Geophys Res Lett 35:L18614

    Article  Google Scholar 

  • Stocker T (2000) Past and future reorganisations in the climate system. Q Sci Rev 19:301–319

    Article  Google Scholar 

  • Straneo F (2006) On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J Phys Oceanogr 36:1822–1840

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2 × CO2 stabilization experiment with land-ice melting. Clim Dyn 29:521–534

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28:291–305

    Article  Google Scholar 

  • Thornalley DJR, Elderfield H, McCave IN (2009) Holocene oscillations in temperature and salinity of the surface North Atlantic. Nature 457:711–714

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11(8):1906–1931

    Article  Google Scholar 

  • Våge K, Pickart RS, Sarafanov A, Knutsen Ø, Mercier H, Lherminier P, van Aken HM, Meincke J, Quadfasel D, Bacon S (2011) The irminger gyre: circulation, convection, and interannual variability. Deep Sea Res Part I: Oceanogr Res Papers 58(5):590–614

    Article  Google Scholar 

  • Våge K, Pickart RS, Thierry V, Reverdin G, Lee CM, Petrie B, Agnew TA, Wong A, Ribergaard MH (2009) Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat Geosci 2:67–72

    Article  Google Scholar 

  • Weaver AJ, Valcke S (1998) On the variability of the thermohaline circulation in the GFDL coupled model. J Clim 11(4):759–767

    Article  Google Scholar 

  • Wiersma AP, Renssen H, Goosse H, Fichefet T (2006) Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model. Clim Dyn 27:831–849

    Article  Google Scholar 

  • Wu P, Wood RA (2008) Convection induced long term freshening of the subpolar North Atlantic Ocean. Clim Dyn 31:941–956

    Article  Google Scholar 

  • Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121

    Article  Google Scholar 

  • Zheng W, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008) ENSO at 6ka and 21ka from ocean-atmosphere coupled model simulations. Clim Dyn 30(7-8):745–762

    Article  Google Scholar 

  • Zhu X, Jungclaus J (2008) Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Clim Dyn 31:731–741

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Sébastien Denvil for access to the model data as well as discussions with Jürgen Bader and Thomas F. Stocker. This work greatly benefited from the advice of two anonymous referees. The research leading to these results has received funding from the European Community’s 7th framework program (FP7/2007-2013) under grant agreement No. GA212643 (‘THOR: Thermohaline Circulation – At Risk’, 2008-2012). The climate simulations were carried out in the framework of the EC-FP6 project ‘ENSEMBLES’. A.B. was funded by the Marie Curie Actions project ‘NICE’ (MRTN-CT-2006-036127), the Research Council of Norway project ‘TOPPNICE’ and the National Centre of Competence in Research ‘Climate’ funded by the Swiss National Science Foundation. This is publication no. A367 from the Bjerknes Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Born.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Born, A., Mignot, J. Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator. Clim Dyn 39, 461–474 (2012). https://doi.org/10.1007/s00382-011-1180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1180-4

Keywords

Navigation