Skip to main content
Log in

Intraoperative MRI versus intraoperative ultrasound in pediatric brain tumor surgery: is expensive better than cheap? A review of the literature

  • Review Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

The extent of brain tumor resection (EOR) is a fundamental prognostic factor in pediatric neuro-oncology in association with the histology. In general, resection aims at gross total resection (GTR). Intraoperative imaging like intraoperative US (iOUS) and MRI have been developed in order to find any tumoral remnant but with different costs. Aim of our work is to review the current literature in order to better understand the differences between costs and efficacy of MRI and iOUS to evaluate tumor remnants intraoperatively.

Methods

We reviewed the existing literature on PubMed until 31st December 2021 including the sequential keywords “intraoperative ultrasound and pediatric brain tumors”, “iUS and pediatric brain tumors”, “intraoperative magnetic resonance AND pediatric brain tumors”, and “intraoperative MRI AND pediatric brain tumors.

Results

A total of 300 papers were screened through analysis of title and abstract; 254 were excluded. After selection, a total of 23 articles were used for this systematic review. Among the 929 patients described, a total of 349(38%) of the cases required an additional resection after an iMRI scan. GTR was measured on 794 patients (data of 69 patients lost), and it was achieved in 552(70%) patients. In case of iOUS, GTR was estimated in 291 out of 379 (77%) cases. This finding was confirmed at the post-operative MRI in 256(68%) cases.

Conclusions

The analysis of the available literature demonstrates that expensive equipment does not always mean better. In fact, for the majority of pediatric brain tumors, iOUS is comparable to iMRI in estimating the EOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thompson EM, Hielscher T, Bouffet E et al (2016) Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol 17:484–495. https://doi.org/10.1016/S1470-2045(15)00581-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maharaj A, Manoranjan B, Verhey LH et al (2019) Predictive measures and outcomes of extent of resection in juvenile pilocytic astrocytoma. J Clin Neurosci 70:79–84. https://doi.org/10.1016/j.jocn.2019.08.066

    Article  PubMed  Google Scholar 

  3. Baliga S, Gandola L, Timmermann B et al (2021) Brain tumors: medulloblastoma, ATRT, ependymoma. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.28395

    Article  PubMed  Google Scholar 

  4. Szalontay L, Khakoo Y (2020) Medulloblastoma: an old diagnosis with new promises. Curr Oncol Rep 22:90. https://doi.org/10.1007/s11912-020-00953-4

    Article  PubMed  Google Scholar 

  5. Ramaswamy V, Taylor MD (2016) Treatment implications of posterior fossa ependymoma subgroups. Chin J Cancer 35:93. https://doi.org/10.1186/s40880-016-0155-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. MacDonald SM, Sethi R, Lavally B et al (2013) Proton radiotherapy for pediatric central nervous system ependymoma: clinical outcomes for 70 patients. Neuro Oncol 15:1552–1559. https://doi.org/10.1093/neuonc/not121

    Article  PubMed  PubMed Central  Google Scholar 

  7. Indelicato DJ, Bradley JA, Rotondo RL et al (2018) Outcomes following proton therapy for pediatric ependymoma. Acta Oncol 57:644–648. https://doi.org/10.1080/0284186X.2017.1413248

    Article  PubMed  Google Scholar 

  8. Patel P, Wallace D, Boop FA et al (2019) Reoperation for medulloblastoma prior to adjuvant therapy. Neurosurgery 84:1050–1058. https://doi.org/10.1093/neuros/nyy095

    Article  PubMed  Google Scholar 

  9. Albright AL, Wisoff JH, Zeltzer PM et al (1996) Effects of medulloblastoma resections on outcome in children: a report from the children’s cancer group. Neurosurgery 38:265–271. https://doi.org/10.1097/00006123-199602000-00007

    Article  CAS  PubMed  Google Scholar 

  10. Zeltzer PM, Boyett JM, Finlay JL et al (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the children’s cancer group 921 randomized phase III study. JCO 17:832–832. https://doi.org/10.1200/JCO.1999.17.3.832

    Article  CAS  Google Scholar 

  11. Choudhri AF, Siddiqui A, Klimo P, Boop FA (2015) Intraoperative MRI in pediatric brain tumors. Pediatr Radiol 45(Suppl 3):S397-405. https://doi.org/10.1007/s00247-015-3322-z

    Article  PubMed  Google Scholar 

  12. Choudhri AF, Klimo P, Auschwitz TS et al (2014) 3T Intraoperative MRI for management of pediatric CNS neoplasms. AJNR Am J Neuroradiol 35:2382–2387. https://doi.org/10.3174/ajnr.A4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prada F, Bene MD, Fornaro R et al (2016) Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. FOC 40:E7. https://doi.org/10.3171/2015.11.FOCUS15573

    Article  Google Scholar 

  14. Saß B, Pojskic M, Zivkovic D et al (2021) Utilizing intraoperative navigated 3D color Doppler ultrasound in glioma surgery. Front Oncol 11:656020. https://doi.org/10.3389/fonc.2021.656020

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coburger J, Scheuerle A, Kapapa T et al (2015) Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: a comparative study with high field intraoperative MRI and conventional sector array ultrasound. Neurosurg Rev 38:499–509. https://doi.org/10.1007/s10143-015-0627-1

    Article  PubMed  Google Scholar 

  16. Hu X, Xu R, Ding H et al (2021) The total resection rate of glioma can be improved by the application of US-MRI fusion combined with contrast-enhanced ultrasound. Clin Neurol Neurosurg 208:106892. https://doi.org/10.1016/j.clineuro.2021.106892

    Article  PubMed  Google Scholar 

  17. Rui W, Pang H, Xie Q et al (2021) Association between histopathology and magnetic resonance imaging texture in grading gliomas based on intraoperative magnetic resonance navigated stereotactic biopsy. J Comput Assist Tomogr 45:728–735. https://doi.org/10.1097/RCT.0000000000001201

    Article  PubMed  Google Scholar 

  18. Bastos DCDA, Juvekar P, Tie Y et al (2021) Challenges and opportunities of intraoperative 3D ultrasound with neuronavigation in relation to intraoperative MRI. Front Oncol 11:656519. https://doi.org/10.3389/fonc.2021.656519

    Article  PubMed  PubMed Central  Google Scholar 

  19. Senft C, Bink A, Franz K et al (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12:997–1003. https://doi.org/10.1016/S1470-2045(11)70196-6

    Article  PubMed  Google Scholar 

  20. Barone DG, Lawrie TA, Hart MG (2014) Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009685.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giordano M, Samii A, Lawson McLean AC et al (2017) Intraoperative magnetic resonance imaging in pediatric neurosurgery: safety and utility. PED 19:77–84. https://doi.org/10.3171/2016.8.PEDS15708

    Article  Google Scholar 

  22. Giordano M, Arraez C, Samii A et al (2016) Neurosurgical tools to extend tumor resection in pediatric hemispheric low-grade gliomas: iMRI. Childs Nerv Syst 32:1915–1922. https://doi.org/10.1007/s00381-016-3177-0

    Article  PubMed  Google Scholar 

  23. Avula S, Jaspan T, Pizer B et al (2021) Comparison of intraoperative and post-operative 3-T MRI performed at 24–72 h following brain tumour resection in children. Neuroradiology 63:1367–1376. https://doi.org/10.1007/s00234-021-02671-5

    Article  PubMed  Google Scholar 

  24. Rao G (2017) Intraoperative MRI and maximizing extent of resection. Neurosurg Clin N Am 28:477–485. https://doi.org/10.1016/j.nec.2017.05.003

    Article  PubMed  Google Scholar 

  25. Limpo H, Díez R, Albisua J, Tejada S (2021) Intraoperative high-field resonance: How to optimize its use in our healthcare system. Neurocirugía (English Edition). https://doi.org/10.1016/j.neucie.2021.05.001

    Article  Google Scholar 

  26. Prada F, Del Bene M, Rampini A et al (2019) Intraoperative strain elastosonography in brain tumor surgery. Oper Neurosurg 17:227–236. https://doi.org/10.1093/ons/opy323

    Article  Google Scholar 

  27. Prada F, Gennari AG, Del Bene M et al (2019) Intraoperative ultrasonography (ioUS) characteristics of focal cortical dysplasia (FCD) type II b. Seizure 69:80–86. https://doi.org/10.1016/j.seizure.2019.02.020

    Article  PubMed  Google Scholar 

  28. Pino M, Imperato A, Musca I et al (2018) New hope in brain glioma surgery: the role of intraoperative ultrasound. A review. Brain Sci 8:202. https://doi.org/10.3390/brainsci8110202

    Article  PubMed Central  Google Scholar 

  29. Harrington CM, Dicker P, Traynor O, Kavanagh DO (2018) Visuospatial abilities and fine motor experiences influence acquisition and maintenance of fundamentals of laparoscopic surgery (FLS) task performance. Surg Endosc 32:4639–4648. https://doi.org/10.1007/s00464-018-6220-2

    Article  PubMed  Google Scholar 

  30. Datta R, Chon S-H, Dratsch T et al (2020) Are gamers better laparoscopic surgeons? Impact of gaming skills on laparoscopic performance in “Generation Y” students. PLoS ONE 15:e0232341. https://doi.org/10.1371/journal.pone.0232341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alvarez-Lopez F, Maina MF, Arango F, Saigí-Rubió F (2020) Use of a low-cost portable 3D virtual reality simulator for psychomotor skill training in minimally invasive surgery: task metrics and score validity. JMIR Serious Games 8:e19723. https://doi.org/10.2196/19723

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nimsky C, Ganslandt O, Gralla J et al (2003) Intraoperative low-field magnetic resonance imaging in pediatric neurosurgery. Pediatr Neurosurg 38:83–89. https://doi.org/10.1159/000068046

    Article  PubMed  Google Scholar 

  34. Tejada S, Avula S, Pettorini B et al (2018) The impact of intraoperative magnetic resonance in routine pediatric neurosurgical practice—a 6-year appraisal. Childs Nerv Syst 34:617–626. https://doi.org/10.1007/s00381-018-3751-8

    Article  PubMed  Google Scholar 

  35. Smith H, Taplin A, Syed S, Adamo MA (2016) Correlation between intraoperative ultrasound and postoperative MRI in pediatric tumor surgery. PED 18:578–584. https://doi.org/10.3171/2016.5.PEDS15739

    Article  Google Scholar 

  36. Ulrich NH, Burkhardt J-K, Serra C et al (2012) Resection of pediatric intracerebral tumors with the aid of intraoperative real-time 3-D ultrasound. Childs Nerv Syst 28:101–109. https://doi.org/10.1007/s00381-011-1571-1

    Article  PubMed  Google Scholar 

  37. Singhal A, Ross Hengel A, Steinbok P, Doug Cochrane D (2015) Intraoperative ultrasound in pediatric brain tumors: does the surgeon get it right? Childs Nerv Syst 31:2353–2357. https://doi.org/10.1007/s00381-015-2805-4

    Article  PubMed  Google Scholar 

  38. Roth J, Beni Adani L, Biyani N, Constantini S (2006) Intraoperative portable 0.12-Tesla MRI in pediatric neurosurgery. Pediatr Neurosurg 42:74–80. https://doi.org/10.1159/000090459

    Article  PubMed  Google Scholar 

  39. El Beltagy MA, Atteya MME (2013) The benefits of navigated intraoperative ultrasonography during resection of fourth ventricular tumors in children. Childs Nerv Syst 29:1079–1088. https://doi.org/10.1007/s00381-013-2103-y

    Article  PubMed  Google Scholar 

  40. Lam CH, Hall WA, Truwit CL, Liu H (2001) Intra-operative MRI-guided approaches to the pediatric posterior fossa tumors. Pediatr Neurosurg 34:295–300. https://doi.org/10.1159/000056041

    Article  CAS  PubMed  Google Scholar 

  41. Kremer P, Tronnier V, Steiner HH et al (2006) Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children. Childs Nerv Syst 22:674–678. https://doi.org/10.1007/s00381-005-0030-2

    Article  PubMed  Google Scholar 

  42. Levy R, Cox RG, Hader WJ et al (2009) Application of intraoperative high-field magnetic resonance imaging in pediatric neurosurgery: clinical article. PED 4:467–474. https://doi.org/10.3171/2009.4.PEDS08464

    Article  Google Scholar 

  43. Kaya S, Deniz S, Duz B et al (2012) Use of an ultra-low field intraoperative MRI system for pediatric brain tumor cases: initial experience with ‘polestar n20.’ Turk Neurosurg. https://doi.org/10.5137/1019-5149.JTN.5615-11.0

    Article  PubMed  Google Scholar 

  44. Kubben PL, van Santbrink H, ter Laak-Poort M et al (2012) Implementation of a mobile 0.15-T intraoperative MR system in pediatric neuro-oncological surgery: feasibility and correlation with early postoperative high-field strength MRI. Childs Nerv Syst 28:1171–1180. https://doi.org/10.1007/s00381-012-1815-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roder C, Breitkopf M et al (2016) Beneficial impact of high-field intraoperative magnetic resonance imaging on the efficacy of pediatric low-grade glioma surgery. Neurosurg Focus 40:E13. https://doi.org/10.3171/2015.11.FOCUS15530

    Article  PubMed  Google Scholar 

  46. Dias S, Sarnthein J, Jehli E et al (2018) Safeness and utility of concomitant intraoperative monitoring with intraoperative magnetic resonance imaging in children: a pilot study. World Neurosurg 115:e637–e644. https://doi.org/10.1016/j.wneu.2018.04.123

    Article  PubMed  Google Scholar 

  47. Low SYY, Lim EHL, Loh LE et al (2020) Use of an offsite intraoperative MRI operating theater for pediatric brain tumor surgery: experience from a Singapore children’s hospital. World Neurosurg 135:e28–e35. https://doi.org/10.1016/j.wneu.2019.10.083

    Article  PubMed  Google Scholar 

  48. Karsy M, Akbari SH, Limbrick D et al (2019) Evaluation of pediatric glioma outcomes using intraoperative MRI: a multicenter cohort study. J Neurooncol 143:271–280. https://doi.org/10.1007/s11060-019-03154-7

    Article  PubMed  Google Scholar 

  49. Roth J, Biyani N, Beni-Adani L, Constantini S (2007) Real-time neuronavigation with high-quality 3D ultrasound SonoWand® in pediatric neurosurgery. Pediatr Neurosurg 43:185–191. https://doi.org/10.1159/000098830

    Article  PubMed  Google Scholar 

  50. El Beltagy MA, Aggag M, Kamal M (2010) Role of intraoperative ultrasound in resection of pediatric brain tumors. Childs Nerv Syst 26:1189–1193. https://doi.org/10.1007/s00381-010-1091-4

    Article  PubMed  Google Scholar 

  51. Moiyadi A, Shetty P, Degaonkar A (2017) Resection of pediatric brain tumors: Intraoperative ultrasound revisited. J Pediatr Neurosci 12:19. https://doi.org/10.4103/jpn.JPN_141_16

    Article  PubMed  PubMed Central  Google Scholar 

  52. Šteňo A, Buvala J, Šteňo J (2021) Large residual pilocytic astrocytoma after failed ultrasound-guided resection: intraoperative ultrasound limitations require special attention. World Neurosurg 150:140–143. https://doi.org/10.1016/j.wneu.2021.03.138

    Article  PubMed  Google Scholar 

  53. Carai A, De Benedictis A, Calloni T et al (2021) Intraoperative ultrasound-assisted extent of resection assessment in pediatric neurosurgical oncology. Front Oncol 11:660805. https://doi.org/10.3389/fonc.2021.660805

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cardoen L, Tauziède-Espariat A, Dangouloff-Ros V et al (2022) Imaging features with histopathologic correlation of CNS high-grade neuroepithelial tumors with a BCOR internal tandem duplication. AJNR Am J Neuroradiol 43:151–156. https://doi.org/10.3174/ajnr.A7367

    Article  CAS  PubMed  Google Scholar 

  55. Raybaud C, Ramaswamy V, Taylor MD, Laughlin S (2015) Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. Childs Nerv Syst 31:1661–1676. https://doi.org/10.1007/s00381-015-2834-z

    Article  PubMed  Google Scholar 

  56. Resende LL, Alves CAPF (2021) Imaging of brain tumors in children: the basics—a narrative review. Transl Pediatr 10:1138–1168. https://doi.org/10.21037/tp-20-285

  57. Renfrow JJ, Strowd RE, Laxton AW et al (2017) Surgical considerations in the optimal management of patients with malignant brain tumors. Curr Treat Options in Oncol 18:46. https://doi.org/10.1007/s11864-017-0487-8

    Article  Google Scholar 

  58. Berger MS (2011) Glioma surgery: a century of challenge. Neurosurgery 58:7–9. https://doi.org/10.1227/NEU.0b013e318226a057

    Article  Google Scholar 

  59. Lau D, Hervey-Jumper SL, Han SJ, Berger MS (2018) Intraoperative perception and estimates on extent of resection during awake glioma surgery: overcoming the learning curve. J Neurosurg 128:1410–1418. https://doi.org/10.3171/2017.1.JNS161811

    Article  PubMed  Google Scholar 

  60. Merchant TE, Bendel AE, Sabin ND et al (2019) Conformal radiation therapy for pediatric ependymoma, chemotherapy for incompletely resected ependymoma, and observation for completely resected, supratentorial ependymoma. J Clin Oncol 37:974–983. https://doi.org/10.1200/JCO.18.01765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Garvin JH, Selch MT, Holmes E et al (2012) Phase II study of pre-irradiation chemotherapy for childhood intracranial ependymoma. Children’s Cancer Group protocol 9942: a report from the Children’s Oncology Group: Pre-Irradiation Chemotherapy for Childhood Ependymoma. Pediatr Blood Cancer 59:1183–1189. https://doi.org/10.1002/pbc.24274

    Article  PubMed  Google Scholar 

  62. Abraham P, Sarkar R, Brandel MG et al (2019) Cost-effectiveness of intraoperative MRI for treatment of high-grade gliomas. Radiology 291:689–697. https://doi.org/10.1148/radiol.2019182095

    Article  PubMed  Google Scholar 

  63. Ramina R, Coelho Neto M, Giacomelli A et al (2010) Optimizing costs of intraoperative magnetic resonance imaging. A series of 29 glioma cases. Acta Neurochir 152:27–33. https://doi.org/10.1007/s00701-009-0430-2

    Article  PubMed  Google Scholar 

  64. Gupta T, Achari R, Chatterjee A et al (2019) Comparison of epidemiology and outcomes in neuro-oncology between the east and the west: challenges and opportunities. Clin Oncol 31:539–548. https://doi.org/10.1016/j.clon.2019.05.018

    Article  CAS  Google Scholar 

  65. Pillay PK (1997) Image-guided stereotactic neurosurgery with the multicoordinate manipulator microscope. Surg Neurol 47:171–176. https://doi.org/10.1016/S0090-3019(96)00471-5

    Article  CAS  PubMed  Google Scholar 

  66. Ruisoto P, Juanes JA, Contador I et al (2012) Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models. Anat Sci Ed 5:132–137. https://doi.org/10.1002/ase.1275

    Article  Google Scholar 

  67. Welchman AE (2016) The human brain in depth: how we see in 3D. Annu Rev Vis Sci 2:345–376. https://doi.org/10.1146/annurev-vision-111815-114605

    Article  PubMed  Google Scholar 

  68. Roethe AL, Rösler J, Misch M et al (2022) Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery. Acta Neurochir 164:3–14. https://doi.org/10.1007/s00701-021-05045-1

    Article  PubMed  Google Scholar 

  69. Haemmerli J, Davidovic A, Meling TR et al (2021) Evaluation of the precision of operative augmented reality compared to standard neuronavigation using a 3D-printed skull. Neurosurg Focus 50:E17. https://doi.org/10.3171/2020.10.FOCUS20789

    Article  PubMed  Google Scholar 

  70. Rogers CM, Jones PS, Weinberg JS (2021) Intraoperative MRI for brain tumors. J Neurooncol 151:479–490. https://doi.org/10.1007/s11060-020-03667-6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

First draft of the manuscript was prepared by Carlo Giussani and Andrea Di Cristofori. Material preparation, data collection, and analysis were performed by Andrea Trezza, Vittorio Ricciuti, and Andrea Held. Critical and final revision of the paper was performed by Valeria Isella and Maura Massimino. All authors contributed to the study conception and design.

Corresponding author

Correspondence to Carlo Giussani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giussani, C., Trezza, A., Ricciuti, V. et al. Intraoperative MRI versus intraoperative ultrasound in pediatric brain tumor surgery: is expensive better than cheap? A review of the literature. Childs Nerv Syst 38, 1445–1454 (2022). https://doi.org/10.1007/s00381-022-05545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-022-05545-0

Keywords

Navigation