Skip to main content

Advertisement

Log in

Surgical Considerations in the Optimal Management of Patients with Malignant Brain Tumors

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Advances in technology are revolutionizing medicine and the limits of what we can offer to our patients. In neurosurgery, technology continues to reduce morbidity, increase surgical accuracy, facilitate tissue acquisition, and promote novel techniques for prolonging survival in patients with neuro-oncologic disease. Surgery has been the backbone of glioma diagnosis and treatment by providing adequate, high quality material for precise histologic diagnosis, and genomic characterization in the setting of significant intratumoral heterogeneity, thus allowing personalized treatment selection in the clinic. The ability to obtain and accurately measure the maximal extent of resection in glioma surgery also remains a central role of the neurosurgeon in managing this cancer. To meet these goals, today’s operating room has transformed from the traditional operating table and anesthesia machine to include neuronavigation instrumentation, intraoperative computed tomography, and magnetic resonance imaging scanners, advanced surgical microscopes fitted with fluorescent light filters, and electrocorticography machines. While surgeons, oncologists, and radiation oncologists all play unique critical roles in the care of patients with malignant gliomas, familiarity with developing techniques in complimentary subspecialties can enhance coordination of patient care, research productivity, professional interactions, and patient confidence and comfort with the physician team. Herein, we provide a summary of the advances in the field of neurosurgical oncology which allow more precise and optimal surgical resection for patients with malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report : primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology. 2012;14:v1–49.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom Q, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and central Nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncology. 2016;18:v1–75.

    Article  PubMed  Google Scholar 

  3. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8. Available from: http://thejns.org/doi/10.3171/jns.2001.95.2.0190

    Article  CAS  PubMed  Google Scholar 

  4. Lote K, Egeland T, Hager B, Stenwig B, Skullerud K, Berg-Johnsen J, et al. Survival, prognostic factors, and therapeutic efficacy in low-grade glioma: a retrospective study in 379 patients. J Clin Oncol. 1997;15:3129–40. Available from: http://ascopubs.org/doi/10.1200/JCO.1997.15.9.3129

    Article  CAS  PubMed  Google Scholar 

  5. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J med. 2009;360:765–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19228619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nozaki S, Oshita T, Nakatani Y, Sasano Y, Yamamoto K, Hume WE, et al. [18F]AA-7: PET imaging in patients with suspected glioma. J Clin Oncol. 2015;33:11066.

    Google Scholar 

  7. Kanu OO, Mehta A, Di C, Lin N, Bortoff K, Bigner DD, et al. Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets. 2009;13:701–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19409033

    Article  CAS  PubMed  Google Scholar 

  8. •• Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27157931. Updated pathologic classification of brain tumors, specifically gliomas were significantly revised from prior editions of the WHO classficiation in that the diagnosis is now an integration of both histologic findings and the molecular markers of IDH1 and 1p/19q

  9. • Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, et al. Association of the extent of resection with survival in lioblastoma. JAMA Oncol. 2016;2:1460. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27310651. The largest systematic review examining the impact of extent of resection of survival. Gross total resection substantially improves overall and progression-free survival

  10. Almeida JP, Chaichana KL, Rincon-Torroella J, Quinones-Hinojosa A. The value of extent of resection of glioblastomas: clinical evidence and current approach. Curr Neurol Neurosci Rep. 2015;15:517. Available from: http://link.springer.com/10.1007/s11910-014-0517-x

    Article  PubMed  Google Scholar 

  11. Keles GE, Chang EF, Lamborn KR, Tihan T, Chang C-J, Chang SM, et al. Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg. 2006;105:34–40. Available from: http://thejns.org/doi/10.3171/jns.2006.105.1.34

    Article  PubMed  Google Scholar 

  12. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF. MR imaging correlates of survival in patients with high-grade gliomas. AJNR am J Neuroradiol. 2005;26:2466–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16286386

    PubMed  Google Scholar 

  13. Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115:3–8. Available from: http://thejns.org/doi/10.3171/2011.2.JNS10998

    Article  PubMed  Google Scholar 

  14. McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110:156–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18847342

    Article  PubMed  Google Scholar 

  15. Oppenlander ME, Wolf AB, Snyder LA, Bina R, Wilson JR, Coons SW, et al. An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg. 2014;120:846–53. Available from: http://thejns.org/doi/10.3171/2013.12.JNS13184

    Article  PubMed  Google Scholar 

  16. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 1994;34:45-60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8121569

    Google Scholar 

  17. Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro-Oncology. 2014;16:81–91. Available from: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/not159

    Article  CAS  PubMed  Google Scholar 

  18. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65:463-9. Available from: https://academic.oup.com/neurosurgery/neurosurgery/article/2555677/Association

    Google Scholar 

  19. • Barone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. In: Barone DG, editor. Cochrane database Syst. Rev. Chichester: Wiley; 2014. p. CD009685. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24474579. A comprehensive review of the studies in the literature examing intraoperative imaging techniquies including iMRI, 5-ALA, neuronavigatin, and DTI-neuronavigation in the neurosurgical resection of brain tumors.

  20. Wu J-S, Gong X, Song Y-Y, Zhuang D-X, Yao C-J, Qiu T-M, et al. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurgery. 2014;61(Suppl 1):145–54. Available from: https://academic.oup.com/neurosurgery/article-lookup/doi/10.1227/NEU.0000000000000372

    Article  PubMed  Google Scholar 

  21. Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, et al. Limitations of stereotactic biopsy in the initial management ofgliomas. Neuro. Oncol. Oxford University Press. 2001;3:193–200. Available from: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/3.3.193

  22. McGirt MJ, Villavicencio AT, Bulsara KR, Friedman AH. MRI-guided stereotactic biopsy in the diagnosis of glioma: comparison of biopsy and surgical resection specimen. Surg Neurol. 2003;59:279–83. Available from: http://www.sciencedirect.com/science/article/pii/S009030190300048X

    Article  Google Scholar 

  23. Weber M-A, Giesel FL, Stieltjes B. MRI for identification of progression in brain tumors: from morphology to function. Expert rev Neurother. 2008;8:1507–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18928344

    Article  PubMed  Google Scholar 

  24. Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl med. 2004;45:1293–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15299051

    CAS  PubMed  Google Scholar 

  25. Lorenzo N Di, Esposito V, Lunardi P, Delfini R, Fortuna A, Cantore G. A comparison of computerized tomography-guided stereotactic and ultrasound-guided techniques for brain biopsy. J. Neurosurg. Journal of Neurosurgery Publishing Group; 1991;75:763–5. Available from: http://thejns.org/doi/10.3171/jns.1991.75.5.0763

  26. Orringer D, Lau D, Khatri S, Zamora-Berridi GJ, Zhang K, Wu C, et al. Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg. 2012;117:851–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22978537

    Article  PubMed  Google Scholar 

  27. Shaw EG, Berkey B, Coons SW, Bullard D, Brachman D, Buckner JC, et al. Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J. Neurosurg. NIH Public Access; 2008;109:835–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18976072

  28. Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, Raza SM, Pascual-Gallego M, Ibrahim A, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro-Oncology. 2014;16:113–22. Available from: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/not137

    Article  PubMed  Google Scholar 

  29. Grabowski M, Recinos P, Nowacki A, Schroeder JL, Angelov L, Barnett G, et al. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg. 2014;121:1115–23.

    Article  PubMed  Google Scholar 

  30. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12:997–1003. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1470204511701966

    Article  PubMed  Google Scholar 

  31. Wirtz CR, Knauth M, Staubert A, Bonsanto MM, Sartor K, Kunze S, et al. Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery. 2000;46:1112-20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10807243

    Article  Google Scholar 

  32. Widhalm G. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence. Clin Neuropathol. 33:260–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24986206

  33. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, et al. In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B. 1998;45:160–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9868806

    Article  CAS  PubMed  Google Scholar 

  34. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16648043

    Article  CAS  PubMed  Google Scholar 

  35. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93:1003–13. Available from: http://thejns.org/doi/10.3171/jns.2000.93.6.1003

    Article  CAS  PubMed  Google Scholar 

  36. Ferraro N, Barbarite E, Albert TR, Berchmans E, Shah AH, Bregy A, et al. The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review. Neurosurg rev. 2016;39:545–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26815631

    Article  PubMed  Google Scholar 

  37. Schebesch K, Brawanski A, Hohenberger C, Hohne J. Fluorescein sodium-guided surgery of malignant brain tumors: history, current concepts, and future projects. Turk Neurosurg. 2016;26:185–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26956810

    PubMed  Google Scholar 

  38. Hamamcıoğlu MK, Akçakaya MO, Göker B, Kasımcan MÖ, Kırış T. The use of the YELLOW 560nm surgical microscope filter for sodium fluorescein-guided resection of brain tumors: our preliminary results in a series of 28 patients. Clin Neurol Neurosurg. 2016;143:39–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26895208

    Article  PubMed  Google Scholar 

  39. Acerbi F, Broggi M, Cavallo C, Anghileri E, Eoli M, Schiariti M, et al. O5.05 * Fluorescein-guided removal of high-grade gliomas with a dedicated filter on the surgical microscope: preliminary results of the fluoglio study. Neuro. Oncol. Oxford University Press; 2014;16:ii10-ii10. Available from: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/nou174.36

  40. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.

    Article  Google Scholar 

  41. • Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. J. Neurooncol. Springer US; 2016;130:269–82. Available from: http://link.springer.com/10.1007/s11060-016-2110-4. A compelling review of the data supporting maximum extent of resection impacting patient survival, symptoms burden, and time to malignant transformation and operative techniques with a focus on awake caniotomy with mapping to elucidate the location of eloquent structures given the plasticity of these functions in the setting of an expending tumor.

  42. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30:2559–65. Available from: http://ascopubs.org/doi/10.1200/JCO.2011.38.4818

    Article  PubMed  Google Scholar 

  43. Hervey-Jumper SL, Li J, Lau D, Molinaro AM, Perry DW, Meng L, et al. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg. 2015;123:325–39. Available from: http://thejns.org/doi/10.3171/2014.10.JNS141520

    Article  PubMed  Google Scholar 

  44. Pujol S, Wells W, Pierpaoli C, Brun C, Gee J, Cheng G, et al. The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging. 2015;25:875–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26259925

    Article  PubMed  PubMed Central  Google Scholar 

  45. Abhinav K, Yeh F-C, Mansouri A, Zadeh G, Fernandez-Miranda JC. High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery. Neuro-Oncology. 2015;17:nov113. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26117712

    Article  Google Scholar 

  46. Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008;248:579–89. Available from: http://pubs.rsna.org/doi/10.1148/radiol.2482071214

    Article  PubMed  Google Scholar 

  47. Roux F-E, Boulanouar K, Lotterie J-A, Mejdoubi M, LeSage JP, Berry I. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery. 2003;52:1335-45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12762879

    Article  Google Scholar 

  48. Ulmer JL, Hacein-Bey L, Mathews VP, Mueller WM, DeYoe EA, Prost RW, et al. Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery. 2004;55:569-79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15335424

    Article  Google Scholar 

  49. Norred SE, Johnson JA. Magnetic resonance-guided laser induced thermal therapy for glioblastoma multiforme: a review. Biomed res Int. 2014;2014:761312. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3914293&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  50. Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. Am. J. Neuroradiol. 2015; Available from: http://www.ncbi.nlm.nih.gov/pubmed/26113069

  51. Bettag M, Ulrich F, Schober R, Fürst G, Langen KJ, Sabel M, et al. Stereotactic laser therapy in cerebral gliomas. Acta Neurochir Suppl (Wien). 1991;52:81–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1792975

    Article  CAS  Google Scholar 

  52. Lee I, Kalkanis S, Hadjipanayis CG. Stereotactic laser interstitial thermal therapy for recurrent high-grade gliomas. Neurosurgery. 2016;79:S24–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27861323

    Article  PubMed  Google Scholar 

  53. Mohammadi AM, Schroeder JL. Laser interstitial thermal therapy in treatment of brain tumors—the NeuroBlate System. Expert Rev Med Devices. 2014;11:109–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24471476

    Article  CAS  PubMed  Google Scholar 

  54. Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin Pharmacokinet. 2002;41:403–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12074689

    Article  CAS  PubMed  Google Scholar 

  55. Grossman SA, Reinhard C, Colvin OM, Chasin M, Brundrett R, Tamargo RJ, et al. The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg. 1992;76:640–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1545259

    Article  CAS  PubMed  Google Scholar 

  56. Brem H, Mahaley MS, Vick NA, Black KL, Schold SC, Burger PC, et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg. 1991;74:441–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1993909

    Article  CAS  PubMed  Google Scholar 

  57. Brem H, Piantadosi S, Burger P, Walker M, Selker R, Vick N, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Polymer-Brain Tumor Treatment Group Lanet. 1995;345:1008–12.

    CAS  Google Scholar 

  58. Hart MG, Garside R, Rogers G, Somerville M, Stein K, Grant R. Chemotherapy wafers for high grade glioma. In: Hart MG, editor. Cochrane database Syst. Rev. Chichester: Wiley; 2011. p. CD007294. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21412902.

    Google Scholar 

  59. Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery. 1997;41:44-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9218294

    Article  Google Scholar 

  60. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology. 2003;5:79–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12672279

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol Oxford Univ Press. 2010;12:871–81. Available from: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/nop054

    Article  CAS  Google Scholar 

  62. Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol Oxford Univ Press. 2015;17:ii3–8. Available from: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/nou354

    Article  Google Scholar 

  63. Bruce JN, Fine RL, Canoll P, Yun J, Kennedy BC, Rosenfeld SS, et al. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery. 2011;69:1272–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21562434

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ferluga S, Tomé CML, Herpai DM, D’Agostino R, Debinski W. Simultaneous targeting of Eph receptors in glioblastoma. Oncotarget. 2016; Available from: http://www.ncbi.nlm.nih.gov/pubmed/27494882

  65. Wersäll P, Ohlsson I, Biberfeld P, Collins VP, von Krusenstjerna S, Larsson S, et al. Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Immunol Immunother. 1997;44:157–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9191875

    Article  PubMed  Google Scholar 

  66. Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A, et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology. 2011;13:132–42. Available from: https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noq142

    Article  CAS  PubMed  Google Scholar 

  67. Voges J, Reszka R, Gossmann A, Dittmar C, Richter R, Garlip G, et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol. 2003;54:479–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14520660

    Article  CAS  PubMed  Google Scholar 

  68. Barua NU, Woolley M, Bienemann AS, Johnson D, Wyatt MJ, Irving C, et al. Convection-enhanced delivery of AAV2 in white matter—a novel method for gene delivery to cerebral cortex. J Neurosci Methods. 2013;220:1–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0165027013002823

    Article  CAS  PubMed  Google Scholar 

  69. Zhang RR, Kuo JS. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Neurosurgery. 2016;78:N9–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26986648

    Article  Google Scholar 

  70. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. Massachusetts Medical Society. 2016;375:2561–9. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1610497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaclyn J. Renfrow MD.

Ethics declarations

Conflict of Interest

Jaclyn J. Renfrow declares that she has no conflict of interest.

Roy E. Strowd declares that he has no conflict of interest.

Adrian W. Laxton has received honorarium from Monteris Medical for teaching a resident/fellow course.

Stephen B. Tatter has served on a Data Safety Monitoring Board for Bristol-Myers Squibb and has received research funding through grants from Monteris Medical and Arbor Pharmaceuticals.

Carol P. Geer declares that she has no conflict of interest.

Glenn J. Lesser declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renfrow, J.J., Strowd, R.E., Laxton, A.W. et al. Surgical Considerations in the Optimal Management of Patients with Malignant Brain Tumors. Curr. Treat. Options in Oncol. 18, 46 (2017). https://doi.org/10.1007/s11864-017-0487-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0487-8

Keywords

Navigation