Skip to main content

Advertisement

Log in

Analysing the effect of soil organic matter on bacterial communities using T-RFLP fingerprinting: different methods, different stories?

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil microbial ecology needs robust tools to elucidate ecological questions, such as the impact of fertilisation on soil microbial communities. However, the methods and data analysis used can directly affect the biological conclusions. In this study, the sensitivity of terminal-restriction fragment length polyphorism (T-RFLP) to four restriction enzymes (RE), six peak area thresholds (PAT) from 0 to 10 % and two matrices (presence/absence and relative abundance) was assessed on soils subjected to eight different long-term amendments. The T-RFLP profiles were analysed using a three-step multivariate analysis approach: (i) cluster analysis and non-metric multi-dimensional scaling, (ii) ANOSIM and PERMANOVA and (iii) correlations. The application of organic and mineral fertilisers over 53 years changed the bacterial community composition regardless if the RE, PAT and matrix were used. However, the clustering of the community, the strength of these differences, the correlations with environmental variables and, subsequently, the biological conclusions varied with the use of RE, PAT and matrix. Hence, the bacterial community composition was found to be either highly sensitive to any changes in soil organic matter strongly correlated to C and N concentration, or only affected by large inputs of C or soil management. Different REs can reveal different bacterial populations affected by different drivers, but PATs 0.5 and 1 % should be used especially when using presence/absence matrix. This study also shows the complexity of the effect of organic and mineral amendment on bacterial community composition and stresses the importance to inform on methodological and data analysis parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aislabie JM, Ryburn J, Gutierrez-Zamora M-L, Rhodes P, Hunter D, Sarmah AK, Barker GM, Farrell RL (2012) Hexadecane mineralization activity in hydrocarbon-contaminated soils of Ross Sea region Antarctica may require nutrients and inoculation. Soil Biol Biochem 45:49–60

    Article  CAS  Google Scholar 

  • Barkovskii AL, Fukui H, Leisen J, Kim S-H, Marsh TL, Khijniak AI (2009) Rearrangement of bacterial community composition during peat diagenesis. Soil Biol Biochem 41:135–143

    Article  CAS  Google Scholar 

  • Bastias BA, Anderson IC, Xu Z, Cairney JWG (2007) RNA- and DNA-based profiling of soil fungal communities in a native Australian eucalypt forest and adjacent Pinus elliotti plantation. Soil Biol Biochem 39:3108–3114

    Article  CAS  Google Scholar 

  • Bennett LT, Kasel S, Tibbits J (2008) Non-parametric multivariate comparisons of soil fungal composition: sensitivity to thresholds and indications of structural redundancy in T-RFLP data. Soil Biol Biochem 40:1601–1611

    Article  CAS  Google Scholar 

  • Bennett LT, Kasel S, Tibbits J (2009) Woodland trees modulate soil resources and conserve fungal diversity in fragmented landscapes. Soil Biol Biochem 41:2162–2169

    Article  CAS  Google Scholar 

  • Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Börjesson G, Menichetti L, Kirchmann H, Kätterer T (2012) Soil microbial community composition affected by 53 years of nitrogen fertilisation and different organic amendments. Biol Fertil Soils 48:245–257

    Article  Google Scholar 

  • Burke DJ, Martin KJ, Rygiewicz PT, Topa MA (2005) Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Biol Biochem 37:1683–1694

    Article  CAS  Google Scholar 

  • Cederlund H, Wessén E, Enwall K, Jones CM, Juhanson J, Pell M, Philippot L, Hallin S (2014) Soil carbon quality and nitrogen fertilization composition bacterial communities with predictable responses of major bacterial phyla. Appl Soil Ecol 84:62–68

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community composition. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Ainsworth M (1993) A method of linking multivariate community composition to environmental variables. Mar Ecol Prog Ser 92:205–219

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330:55–80

    Article  Google Scholar 

  • Culman SW, Gauch HG, Blackwood CB, Thies JE (2008) Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study. J Microbiol Methods 75:55–63

    Article  CAS  PubMed  Google Scholar 

  • Elfstrand S, Hedlund K, Mårtensson A (2007) Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl Soil Ecol 35:610–621

    Article  Google Scholar 

  • Elsayed OF, Maillard E, Vuilleumier S, Imfeld G (2014) Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor. Sci Total Environ 499:327–335

    Article  CAS  PubMed  Google Scholar 

  • Enwall K, Philippot L, Hallin S (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71:8335–8343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Enwall K, Nyberg K, Bertilsson S, Cederlund H, Stenström J, Hallin S (2007) Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biol Biochem 39:106–115

    Article  CAS  Google Scholar 

  • Godin A, McLaughlin JW, Webster KL, Packalen M, Basiliko N (2012) Methane and methanogen community dynamics across a boreal peatland nutrient gradient. Soil Biol Biochem 48:96–105

    Article  CAS  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605

    Article  CAS  PubMed  Google Scholar 

  • Hassan SED, Liu A, Bittman S, Forge TA, Hunt DE, Hijri M, St-Arnaud M (2013) Impact of 12-year field treatments with organic and inorganic fertilizers on crop productivity and mycorrhizal community composition. Biol Fertil Soils 49:1109–1121

    Article  Google Scholar 

  • Kasel S, Bennett LT, Tibbits J (2008) Land use influences soil fungal community composition across central Victoria, south-eastern Australia. Soil Biol Biochem 40:1724–1732

    Article  CAS  Google Scholar 

  • Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141:184–192

    Article  Google Scholar 

  • Klamer M, Hedlund K (2004) Fungal diversity in set-aide agricultural soil investigated using terminal-restriction fragment length polymorphism. Soil Biol Biochem 36:983–988

    Article  CAS  Google Scholar 

  • Kluber LA, Smith JE, Myrold DD (2011) Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil Biol Biochem 43:1042–1050

    Article  CAS  Google Scholar 

  • Lerch TZ, Coucheney E, Herrmann AM (2013) Sensitivity of soil microbial catabolic profiles to a gradient of carbon inputs: does the soil organic matter matter? Soil Biol Biochem 57:911–915

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marsh TL (2005) Culture‐independent microbial community analysis with terminal restriction fragment length polymorphism. Methods Enzymol 397:308–329

    Article  CAS  PubMed  Google Scholar 

  • Marsh TL, Saxman P, Cole J, Tiedje J (2000) Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol 66:3616–3620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community composition and dynamics. Environ Microbiol 2:39–50

    Article  CAS  PubMed  Google Scholar 

  • Osborne CA, Rees GN, Bernstein Y, Janssen PH (2006) New threshold and confidence estimates for terminal restriction fragment length polymorphism analysis of complex bacterial communities. Appl Environ Microbiol 72:1270–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petric I, Philippot L, Abbate C, Bispo A, Chesnot T, Hallin S, Laval K, Lebeau T, Lemanceau P, Leyval C, Lindström K, Pandard P, Romero E, Sarr A, Schloter M, Simonet P, Smalla K, Wilke BM, Martin–Laurent F (2011) Inter-laboratory evaluation of the ISO standard 11063 “Soil quality—Method to directly extract DNA from soil samples”. J Microbiol Methods 84:454–460

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI (2010) Replicate or lie. Environ Microbiol 12:1806–1810

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reardon CL, Gollany HT, Wuest SB (2014) Diazotroph community composition and abundance in wheat–fallow and wheat–pea crop rotations. Soil Biol Biochem 69:406–412

    Article  CAS  Google Scholar 

  • Rees GN, Baldwin DS, Watson GO, Perryman S, Nielsen DL (2004) Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Anton Leeuw 86:339–347

    Article  Google Scholar 

  • Rousidou C, Papadopoulou ES, Kortsinidou M, Giannakou M, Singh BK, Menkissoglu-Spiroudi U, Karpouzas DG (2013) Bio-pesticides: harmful or harmless to ammonia oxidizing microorganisms? The case of a Paecilomyces lilacinus-based nematicide. Soil Biol Biochem 67:98–105

    Article  CAS  Google Scholar 

  • Schütte U, Abdo Z, Bent S, Shyu C, Williams C, Pierson J, Forney L (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380

    Article  PubMed  Google Scholar 

  • Sessitch A, Weilharter A, Gerzabek M, Kirchman H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertility experiment. Appl Environ Microbiol 67:4215–4224

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Singh BK, Tate KR, Ross DJ, Singh DJ, Dando J, Thomas N, Milliard P (2009) Soil methane oxidation and methanotroph responses to afforestation of pastures with Pinus radiata stands. Soil Biol Biochem 41:2196–2205

    Article  CAS  Google Scholar 

  • Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591

    Article  CAS  Google Scholar 

  • Trabelsi D, Ben Ammar H, Mengoni A, Mhamdi R (2012) Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biol Biochem 54:1–6

    Article  CAS  Google Scholar 

  • Van Dorst J, Bissett A, Palmer AS, Brown M, Snape I, Stark JS, Raymond B, McKinlay J, Ji M, Winsley T, Ferrari BC (2014) Community fingerprinting in a sequencing world. FEMS Microbiol Ecol 89:316–330

    Article  PubMed  Google Scholar 

  • Wessén E, Nyberg K, Jansson JK, Hallin S (2010) Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl Soil Ecol 45:193–200

    Article  Google Scholar 

  • Witter E, Mårtensson AM, Garcia FV (1993) Size of the soil microbial biomass in a long-term field experiment as affected by different n-fertilizers and organic manures. Soil Biol Biochem 25:659–669

    Article  Google Scholar 

  • Wu K, Yuan S, Wang L, Shi J, Zao J, Shen B, Shen Q (2014) Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol Fert Soils 50:961–971

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Soil and Environment, SLU (Uppsala, Sweden) for access to soil samples and managing the Ultuna Long-Term Soil Organic Matter Experiment. We would also like to thank Dr Susan Johnston for proof reading the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Z. Lerch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaud, A., Diouf, F., Herrmann, A.M. et al. Analysing the effect of soil organic matter on bacterial communities using T-RFLP fingerprinting: different methods, different stories?. Biol Fertil Soils 51, 959–971 (2015). https://doi.org/10.1007/s00374-015-1041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1041-0

Keywords

Navigation