Skip to main content
Log in

Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The Ultuna long-term soil organic matter experiment in Sweden (59′82° N, 17′65° E) was started in 1956 to study the effects of different N fertilisers and organic amendments on soil properties. In this study, samples were taken from 11 of the treatments, including unfertilised bare fallow and cropped fallow, straw with and without N addition, green manure, peat, farmyard manure, sawdust, sewage sludge, calcium nitrate and ammonium sulphate, with n = 4 for each treatment. Samples were taken from topsoil (0–20 cm) and subsoil (27–40 cm depth) and analysed for concentrations of phospholipid fatty acids (PLFAs), organic C, total N and pH. The results showed that the subsoil samples reflected the total PLFA content of the topsoil, but not the microbial community structure. Total PLFA content was well correlated with total organic C and total N in both topsoil and subsoil. Total PLFA content in topsoil samples was highest in the sewage sludge treatment (89 ± 22 nmol PLFA g dw−1). This contradicts earlier findings on microbial biomass in this sewage sludge-treated soil, which indicated inhibition of microorganisms, probably by heavy metals added with sludge. A switch towards microbial growth and faster decomposition of organic matter occurred around 2000, coinciding with lowered heavy metal content in the sludge. According to the PLFA data, the microbial community in the sewage sludge treatment is now dominated by Gram-positive bacteria. A lack of Gram-negative bacteria was also observed for the ammonium sulphate treatment, obviously caused by a drop in pH to 4.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abaye DA, Lawlor K, Hirsch PR, Brookes PC (2005) Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur J Soil Sci 56:93–102. doi:10.1111/j.1365-2389.2004.00648.x

    Article  CAS  Google Scholar 

  • Åkerblom S, Bååth E, Bringmark L, Bringmark E (2007) Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers. Biol Fertil Soils 44:79–91. doi:10.1007/s00374-007-0181-2

    Article  Google Scholar 

  • Arrouays D, Bellamy PH, Paustian K (2009) Soil inventory and monitoring. Current issues and gaps. Eur J Soil Sci 60:721–722. doi:10.1111/j.1365-2389.2009.01193.x

    Article  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Poll 47:335–379

    Article  Google Scholar 

  • Bååth E, Frostegård Å, Díaz-Raviña M, Tunlid A (1998) Microbial community-based measurements to estimate heavy metal effects in soil: the use of phospholipid fatty acid patterns and bacterial community tolerance. Ambio 27:58–61

    Google Scholar 

  • Bååth E, Díaz-Raviña M, Bakken LR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50:496–505. doi:10.1007/s00248-005-0008-3

    Article  PubMed  Google Scholar 

  • Bensultana A, Ouhdouch Y, Hassani L, Mezrioui N-E, Rafouk L (2010) Isolation and characterization of wastewater sand filter actinomycetes. World J Microbiol Biotechnol 26:481–487. doi:10.1007/s11274-009-0194-0

    Article  Google Scholar 

  • Bitton G (2005) Wastewater Microbiology, 3rd edn. Wiley, Hoboken. doi:wiley.com/10.1002/jobm.3620350403

    Book  Google Scholar 

  • Börjesson G, Sundh I, Tunlid A, Svensson BH (1998) Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biol Biochem 30:1423–1433

    Article  Google Scholar 

  • Börjesson G, Sundh I, Svensson BH (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48:305–312. doi:10.1016/j.femsec.2004.02.006

    Article  PubMed  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profile. Microb Ecol 36:1–12

    Article  PubMed  CAS  Google Scholar 

  • Brussaard L, Kuyper TW, Didden WAM, de Goede RGM, Bloem J (2003) Biological soil quality from biomass to biodiversity—importance and resilience to management stress and disturbance. In: Schjønning P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. CABI, Wallingford, pp 139–161

    Google Scholar 

  • Drenovsky RE, Steenwerth KL, Jackson LE, Scow KM (2010) Land use and climatic factors structure regional patterns in soil microbial communities. Global Ecol Biogeogr 19:27–39. doi:10.1111/j.1466-8238.2009.00486.x

    Article  Google Scholar 

  • Elfstrand S, Hedlund K, Mårtensson A (2007) Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl Soil Ecol 35:610–621. doi:10.1016/j.apsoil.2006.09.011

    Article  Google Scholar 

  • Enwall K, Nyberg K, Bertilsson S, Cederlund H, Stenström J, Hallin S (2007) Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soils. Soil Biol Biochem 39:106–115. doi:10.1016/j.soilbio.2006.06.015

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty-acid composition, biomass, and activity of microbial communities from 2 soil types experimentally exposed to different heavy-metals. Appl Environ Microbiol 59:3605–3617

    PubMed  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625. doi:10.1016/j.soilbio.2010.11.021

    Article  Google Scholar 

  • Gomes NCM, Landi L, Smalla K, Nannipieri P, Brookes PC, Renella G (2010) Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungal communities. Ecotoxicol Environ Safety 73:1255–1263. doi:10.1016/j.ecoenv.2010.07.027

    Article  PubMed  CAS  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605. doi:10.1038/ismej.2008.128

    Article  PubMed  CAS  Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853. doi:10.1016/j.soilbio.2008.07.030

    Article  CAS  Google Scholar 

  • Joner EJ, Eldhuset TD, Lange H, Frostegård Å (2005) Changes in the microbial community in a forest soil amended with aluminium in situ. Plant Soil 275:295–304. doi:10.1007/s11104-005-2287-3

    Article  CAS  Google Scholar 

  • Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter per unit carbon than above-ground crop residues - calculations based on detailed data from the long-term Ultuna soil organic matter field experiment. Agric Ecosys Environ 141:184–192. doi:10.1016/j.agee.2011.02.029

    Article  Google Scholar 

  • Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R (2005) Phospholipid fatty acid—a bioindicator of environment monitoring and assessment in soil ecosystem. Curr Sci (India) 89:1103–1112

    CAS  Google Scholar 

  • Kieft TL, Wilch E, O’Connor K, Ringelberg DB, White DC (1997) Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl Environ Microbiol 63:1531–1542

    PubMed  CAS  Google Scholar 

  • Kirchmann H, Persson J, Carlgren K (1994) The Ultuna long-term soil organic matter experiment. Reports and dissertations 17, Department of Soil Sciences. Swedish Univ. Agric. Sciences, Uppsala

    Google Scholar 

  • Kirchmann H, Pichlmayer F, Gerzabek MH (1996) Sulfur balances and sulfur-34 abundance in a long-term fertilizer experiment. Soil Sci Soc Am J 59:174–178

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905. doi:10.1016/S0038-0717(03)00120-2

    Article  CAS  Google Scholar 

  • Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem 40:425–433. doi:10.1016/j.soilbio.2007.09.016

    Article  CAS  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461. doi:10.1016/S0038-0717(02)00297-3

    Article  CAS  Google Scholar 

  • Marstorp H, Guan X, Gong P (2000) Relationship between dsDNA, chloroform labile C and ergosterol in soils of different organic matter contents and pH. Soil Biol Biochem 32:879–882

    Article  CAS  Google Scholar 

  • Mårtensson A, Witter E (1990) Influence of various soil amendments on nitrogen-fixing soil-microorganisms in a long-term field experiment, with special reference to sewage-sludge. Soil Biol Biochem 22(7):977–982

    Article  Google Scholar 

  • Mattsson L (2010) RAM-56 Mullhaltsförsök. Ramförsöket på Ultuna. http://www-mv.slu.se/vaxtnaring/forsok/RAM-56/ramallm.htm. (In Swedish). Accessed 18 May 2011

  • McNabb A, Shuttleworth R, Behme R, Colby WD (1997) Fatty acid characterization of rapidly growing pathogenic aerobic actinomycetes as a means of identification. J Clin Microbiol 35:1361–1368

    PubMed  CAS  Google Scholar 

  • Morvan X, Saby NPA, Arrouys D, Le Bas C, Jones RJA, Verheijen FGA, Bellamy PH, Stephens M, Kibblewhite MG (2008) Soil monitoring in Europe: a review of existing systems and requirements for harmonisation. Sci Total Environ 391:1–12. doi:10.1016/j.scitotenv.2007.10.046

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Kanao-Koshikawa M, Takamatsu T (2005) Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Poll 164:103–118. doi:10.1007/s11270-005-2254-x

    Article  CAS  Google Scholar 

  • Nielsen P, Petersen SO (2000) Ester-linked polar lipid fatty acid profiles of soil microbial communities: a comparison of extraction methods and evaluation of interference from humic acids. Soil Biol Biochem 32:1241–1249

    Article  CAS  Google Scholar 

  • Petersen SO, Klug MJ (1994) Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl Environ Microbiol 60:2421–2430

    PubMed  CAS  Google Scholar 

  • Petersen SO, Frohne PS, Kennedy AC (2002) Dynamics of a soil microbial community under spring wheat. Soil Sci Soc Am J 66:826–833

    Article  CAS  Google Scholar 

  • Petersen SO, Roslev P, Bol R (2004) Dynamics of a pasture soil microbial community after deposition of cattle urine amended with [13C]urea. Appl Environ Microbiol 70:6363–6369. doi:10.1128/AEM.70.11.6363-6369.2004

    Article  PubMed  CAS  Google Scholar 

  • Rethemeyer J, Kramer C, Gleixner G, John B, Yamashita T, Flessa H, Andersen N, Nadeau MJ, Grootes PM (2005) Transformation of organic matter in agricultural soils: radiocarbon concentration versus soil depth. Geoderma 128:94–105. doi:10.1016/j.geoderma.2004.12.017

    Article  CAS  Google Scholar 

  • Řezáčová V, Baldrian P, Hršelová H, Larsen J, Gryndler M (2007) Influence of mineral and organic fertilization on soil fungi, enzyme activities and humic substances in a long-term field experiment. Folia Microbiologica 52:415–422

    Article  PubMed  Google Scholar 

  • Richter DD, Hofmockel M, Callaham MA (2007) Long-term soil experiments: keys to managing Earth’s rapidly changing ecosystems. Soil Sci Soc Am J 71:266–279. doi:10.2136/sssaj2006.0181

    Article  CAS  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2010) The microbial PLFA composition as affected by pH in an arable soil. Soil Biol Biochem 42:516–520. doi:10.1016/j.soilbio.2009.11.026

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi:10.1007/s11104-010-0391-5

    Article  CAS  Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biol 16:416–426. doi:10.1111/j.1365-2486.2009.01884.x

    Article  Google Scholar 

  • Schnürer J, Clarholm M, Rosswall T (1985) Microbial biomass and activity in an agricultural soil with different organic-matter contents. Soil Biol Biochem 17:611–618

    Article  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224

    Article  PubMed  CAS  Google Scholar 

  • Söderberg KH, Probanza A, Jumpponen A, Bååth E (2004) The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil- and cfu-PLFA techniques. Appl Soil Ecol 25:135–145. doi:10.1016/j.apsoil.2003.08.005

    Article  Google Scholar 

  • Steger K, Jarvis Å, Smårs S, Sundh I (2003) Comparison of signature lipid methods to determine microbial community structure in compost. J Microbiol Meth 55:371–382. doi:10.1016/S0167-7012(03)00187-8

    Article  CAS  Google Scholar 

  • Swedling E-O (1992) Analysis of sludge from Kungsängsverket 1968–1991. Letter to K. Carlgren, SLU, dated 1992-12-01

  • Swedling E-O (2011) Analysis of sludge from Kungsängsverket 1987–2010. Personal communication. 2011-01-12

  • Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G (2010) Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem 42:1558–1565. doi:10.1016/j.soilbio.2010.05.030

    Article  CAS  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 7. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • Turpeinen R, Kairesalo T, Häggblom MM (2004) Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol 47:39–50

    Article  PubMed  CAS  Google Scholar 

  • Wakelin SA, Chu GX, Lardner R, Liang Y, McLaughlin M (2010) A single application of Cu to field soil has long-term effects on bacterial community structure, diversity, and soil processes. Pedobiologia 53:149–158. doi:10.1016/j.pedobi.2009.09.002

    Article  CAS  Google Scholar 

  • Wessén E, Hallin S, Philippot L (2010) Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biol Biochem 42:1759–1765. doi:10.1016/j.soilbio.2010.06.013

    Article  Google Scholar 

  • White DC, Stair JO, Ringelberg DB (1996) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J Ind Microbiol 17:185–196

    Article  CAS  Google Scholar 

  • Witter E (1996) Soil C balance in a long-term field experiment in relation to the size of the microbial biomass. Biol Fertil Soils 23:33–37

    Article  Google Scholar 

  • Witter E, Mårtensson AM, Garcia FV (1993) Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil Biol Biochem 25:659–669

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the SLU programme for environmental monitoring and assessment in the agricultural landscape, and by the Swedish Farmers’ Foundation for Agricultural Research (SLF). Thanks to Karin Enwall for access to data published by Enwall et al. (2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Börjesson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Börjesson, G., Menichetti, L., Kirchmann, H. et al. Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol Fertil Soils 48, 245–257 (2012). https://doi.org/10.1007/s00374-011-0623-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0623-8

Keywords

Navigation