Skip to main content
Log in

The Radial Point Interpolation Method combined with a bi-directional structural topology optimization algorithm

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Projecting reduced-weight components with increased performance is a continuous engineering challenge, especially in the aircraft industry, where fuel consumption, emissions, and performance are highly dependent on structure weight. Nowadays, topology optimization is a growing computational technique capable of calculating optimal material configurations within a design domain and boundary conditions. Although the Finite Element Method (FEM) is the most disseminated discretization technique in engineering, meshless methods emerged as efficient alternatives to mesh-based methods. In meshless methods, the problem domain is discretized by an unstructured nodal distribution with no predetermined connectivity. Additionally, accurate and smooth stress fields can be obtained as a result of the elaborate shape functions and deep nodal connectivity allowed by meshless techniques. Despite, meshless methods application to topology optimization is still limited. In this work, an improved evolutionary topology optimization algorithm is combined with the Radial Point Interpolation Method (RPIM), a meshless technique. First, the proposed method was validated by solving two benchmark topology optimization problems, for which the developed algorithm efficiently achieved the optimal material configuration. Then, the capability of the topology optimization algorithm is demonstrated by extending the methodology to practical aircraft applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material (data transparency)

Not applicable.

Code availability (software application or custom code)

Not applicable.

References

  1. Michell AGM (1904) LVIII. The limits of economy of material in frame-structures. Dublin Philos Mag J Sci 8(47):589–597. https://doi.org/10.1080/14786440409463229 (London, Edinburgh)

    Article  MATH  Google Scholar 

  2. Rozvany GIN (1972) Grillages of maximum strength and maximum stiffness. Int J Mech Sci 14(10):651–666. https://doi.org/10.1016/0020-7403(72)90023-9

    Article  Google Scholar 

  3. Rozvany GIN (1977) Optimum choice of determinate trusses under multiple loads. J Struct Div 103(12):2432–2433

    Article  Google Scholar 

  4. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224. https://doi.org/10.1016/0045-7825(88)90086-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202. https://doi.org/10.1007/BF01650949

    Article  Google Scholar 

  6. Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336. https://doi.org/10.1016/0045-7825(91)90046-9

    Article  Google Scholar 

  7. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252. https://doi.org/10.1007/bf01742754

    Article  Google Scholar 

  8. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Compurers Struct 49(5):885–896

    Article  Google Scholar 

  9. Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048. https://doi.org/10.1108/02644409810244129

    Article  MATH  Google Scholar 

  10. Yang XY, Xie YM, Steven GP, Querin OM (1999) Bi-directional evolutionary method for stiffness optimisation. AIAA J 37(11):1488–1493. https://doi.org/10.2514/3.14346

    Article  Google Scholar 

  11. Querin OM, Steven GP, Xie YM (2000) Evolutionary structural optimisation using an additive algorithm. Finite Elem Anal Des 34(3–4):291–308. https://doi.org/10.1016/S0168-874X(99)00044-X

    Article  MATH  Google Scholar 

  12. Querin OM, Young V, Steven GP, Xie YM (2000) Computational efficiency and validation of bi-directional evolutionary structural optimization. Comput Methods Appl Mech Eng 189(2):559–573. https://doi.org/10.1016/S0045-7825(99)00309-6

    Article  MATH  Google Scholar 

  13. Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362. https://doi.org/10.1016/j.jcp.2003.09.033

    Article  MathSciNet  MATH  Google Scholar 

  14. Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272. https://doi.org/10.1137/S0363012997323230

    Article  MathSciNet  MATH  Google Scholar 

  15. Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51. https://doi.org/10.1007/BF01742933

    Article  Google Scholar 

  16. Jia H, Beom HG, Wang Y, Lin S, Liu B (2011) Evolutionary level set method for structural topology optimization. Comput Struct 89(5–6):445–454. https://doi.org/10.1016/j.compstruc.2010.11.003

    Article  Google Scholar 

  17. Wang MY, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des Trans ASME 127(5):941–956. https://doi.org/10.1115/1.1909206

    Article  Google Scholar 

  18. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393. https://doi.org/10.1016/j.jcp.2003.09.032

    Article  MathSciNet  MATH  Google Scholar 

  19. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528. https://doi.org/10.1006/jcph.2000.6581

    Article  MathSciNet  MATH  Google Scholar 

  20. Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. Comptes Rendus Math 334:1125–1130. https://doi.org/10.1016/S1631-073X(02)02412-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Wallin M, Ristinmaa M (2014) Boundary effects in a phase-field approach to topology optimization. Comput Methods Appl Mech Eng 278:145–159. https://doi.org/10.1016/j.cma.2014.05.012

    Article  MathSciNet  MATH  Google Scholar 

  22. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var 9:19–48. https://doi.org/10.1051/cocv:2002070

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang SY, Tai K (2005) Structural topology design optimization using Genetic Algorithms with a bit-array representation. Comput Methods Appl Mech Eng 194(36–38):3749–3770. https://doi.org/10.1016/j.cma.2004.09.003

    Article  MATH  Google Scholar 

  24. Liu X, Yi WJ, Li QS, Shen P-S (2008) Genetic evolutionary structural optimization. J Constr Steel Res 64:305–311. https://doi.org/10.1016/j.jcsr.2007.08.002

    Article  Google Scholar 

  25. Daxini SD, Prajapati JM (2019) Numerical shape optimization based on meshless method and stochastic optimization technique. Eng Comput. https://doi.org/10.1007/s00366-019-00714-3

    Article  Google Scholar 

  26. Daxini SD, Prajapati JM (2019) Structural shape optimization with meshless method and swarm-intelligence based optimization. Int J Mech Mater Des. https://doi.org/10.1007/s10999-019-09451-3

    Article  Google Scholar 

  27. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Netherlands

    Google Scholar 

  28. Belinha J (2014) Meshless methods in biomechanics—bone tissue remodelling analysis, 1st edn. Springer, Cham

    Book  MATH  Google Scholar 

  29. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  30. Libersky LD, Petschek AG (1991) Smooth particle hydrodynamics with strength of materials. Lect Notes Phys 395:248–257

    Article  Google Scholar 

  31. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318. https://doi.org/10.1007/BF00364252

    Article  MathSciNet  MATH  Google Scholar 

  32. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256. https://doi.org/10.1002/nme.1620370205

    Article  MathSciNet  MATH  Google Scholar 

  33. Wing Kam L, Jun S, Yi Fei Z (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    MathSciNet  MATH  Google Scholar 

  34. Atluri SN, Zhu T (1998) A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127. https://doi.org/10.1007/s004660050346

    Article  MathSciNet  MATH  Google Scholar 

  35. De S, Bathe KJ (2000) The method of finite spheres. Comput Mech 25(4):329–345. https://doi.org/10.1007/s004660050481

    Article  MathSciNet  MATH  Google Scholar 

  36. Braun J, Sambridge M (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376:655–660. https://doi.org/10.1038/376655a0

    Article  Google Scholar 

  37. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43:839–887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5%3c839::AID-NME423%3e3.0.CO;2-R

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54(11):1623–1648. https://doi.org/10.1002/nme.489

    Article  MATH  Google Scholar 

  39. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50(4):937–951. https://doi.org/10.1002/1097-0207(20010210)50:4%3c937::AID-NME62%3e3.0.CO;2-X

    Article  MATH  Google Scholar 

  40. Dinis LMJS, Natal Jorge RM, Belinha J (2007) Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput Methods Appl Mech Eng 196:2009–2028. https://doi.org/10.1016/j.cma.2006.11.002

    Article  MATH  Google Scholar 

  41. Belinha J, Dinis LMJS, Jorge RMN (2012) The natural radial element method. Int J Numer Methods Eng. https://doi.org/10.1002/nme

    Article  MATH  Google Scholar 

  42. Belinha J, Dinis LMJS, Jorge RMN (2013) Composite laminated plate analysis using the natural radial element method. Compos Struct 103:50–67. https://doi.org/10.1016/j.compstruct.2013.03.018

    Article  Google Scholar 

  43. Belinha J, Dinis LMJS, Nataljorge RM (2013) Analysis of thick plates by the natural radial element method. Int J Mech Sci 76:33–48. https://doi.org/10.1016/j.ijmecsci.2013.08.011

    Article  Google Scholar 

  44. Grindeanu I, Chang KH, Choi KK, Chen JS (1998) Design sensitivity analysis of hyperelastic structures using a meshless method. AIAA J 36(4):618–627. https://doi.org/10.2514/2.414

    Article  Google Scholar 

  45. Grindeanu I, Choi KK, Chen J-S, Chang K-H (1999) Shape design optimization of hyperelastic structures using a meshless method. AIAA J 37(8):990–997. https://doi.org/10.2514/3.14273

    Article  Google Scholar 

  46. Grindeanu I, Kim NH, Choi KK, Chen JS (2002) CAD-based shape optimization using a meshfree method. Concurr Eng 10(1):55–66. https://doi.org/10.1106/106329302024056

    Article  Google Scholar 

  47. Kim NH, Choi KK, Botkin ME (2003) Numerical method for shape optimization using meshfree method. Struct Multidiscip Optim 24(6):418–429. https://doi.org/10.1007/s00158-002-0255-6

    Article  Google Scholar 

  48. Zhang ZQ, Zhou JX, Zhou N, Wang XM, Zhang L (2005) Shape optimization using reproducing kernel particle method and an enriched genetic algorithm. Comput Methods Appl Mech Eng 194(39–41):4048–4070. https://doi.org/10.1016/j.cma.2004.10.004

    Article  MathSciNet  MATH  Google Scholar 

  49. Zou W, Zhou JX, Zhang ZQ, Li Q (2007) A truly meshless method based on partition of unity quadrature for shape optimization of continua. Comput Mech 39(4):357–365. https://doi.org/10.1007/s00466-006-0032-2

    Article  MathSciNet  MATH  Google Scholar 

  50. Bobaru F, Mukherjee S (2001) Shape sensivity analysis and shape optimization in planar elasticity using the element-free Galerkin method. Comput Methods Appl Mech Eng 190(32–33):4319–4337. https://doi.org/10.1016/S0045-7825(00)00321-2

    Article  MATH  Google Scholar 

  51. Zhao Z (1991) Shape design sensitivity analysis using the boundary element method—lecture notes in engineering 62. Springer-Verlag, Berlin

    Google Scholar 

  52. Bobaru F, Mukherjee S (2002) Meshless approach to shape optimization of linear thermoelastic solids. Int J Numer Methods Eng 53:765–796. https://doi.org/10.1002/nme.311

    Article  Google Scholar 

  53. Bobaru F, Rachakonda S (2006) E(FG)2: a new fixed-grid shape optimization method based on the element-free galerkin mesh-free analysis: taking large steps in shape optimization. Struct Multidiscip Optim 32:215–228. https://doi.org/10.1007/s00158-006-0018-x

    Article  MathSciNet  MATH  Google Scholar 

  54. Juan Z, Shuyao L, Guangyao L (2010) The topology optimization design for continuum structures based on the element free Galerkin method. Eng Anal Bound Elem 34(7):666–672. https://doi.org/10.1016/j.enganabound.2010.03.001

    Article  MathSciNet  MATH  Google Scholar 

  55. Luo Z, Zhang N, Wang Y, Gao W (2012) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng. https://doi.org/10.1002/nme

    Article  MATH  Google Scholar 

  56. Zhao F (2014) Topology optimization with meshless density variable approximations and BESO method. Comput Aided Des 56:1–10. https://doi.org/10.1016/j.cad.2014.06.003

    Article  MathSciNet  Google Scholar 

  57. Shobeiri V (2015) The topology optimization design for cracked structures. Eng Anal Bound Elem 58:26–38. https://doi.org/10.1016/j.enganabound.2015.03.002

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang Y, Luo Z, Wu J, Zhang N (2015) Topology optimization of compliant mechanisms using element-free Galerkin method. Adv Eng Softw 85:61–72. https://doi.org/10.1016/j.advengsoft.2015.03.001

    Article  Google Scholar 

  59. Cui M, Chen H, Zhou J, Wang F (2017) A meshless method for multi-material topology optimization based on the alternating active-phase algorithm. Eng Comput 33(4):871–884. https://doi.org/10.1007/s00366-017-0503-4

    Article  Google Scholar 

  60. Yang X, Zheng J, Long S (2017) Topology optimization of continuum structures with displacement constraints based on meshless method. Int J Mech Mater Des 13(2):311–320. https://doi.org/10.1007/s10999-016-9337-2

    Article  Google Scholar 

  61. Lin J, Guan Y, Zhao G, Naceur H, Lu P (2017) Topology optimization of plane structures using smoothed particle hydrodynamics method. Int J Numer Methods Eng 110:726–744. https://doi.org/10.1002/nme.5427

    Article  MathSciNet  Google Scholar 

  62. Wang K, Zhou S, Nie Z, Kong S (2008) Natural neighbour Petrov-Galerkin Method for shape design sensitivity analysis. Comput Model Eng Sci 26(2):107–121. https://doi.org/10.3970/cmes.2008.026.107

    Article  Google Scholar 

  63. Li S, Atluri SN (2008) The MLPG mixed collocation method for material orientation and topology optimization of anisotropic solids and structures. Comput Model Eng Sci 30(1):37–56. https://doi.org/10.3970/cmes.2008.030.037

    Article  Google Scholar 

  64. Zheng J, Long S, Xiong Y, Li G (2009) A finite volume meshless local petrov-galerkin method for topology optimization design of the continuum structures. Comput Model Eng Sci 42(1):19–34. https://doi.org/10.3970/cmes.2009.042.019

    Article  MathSciNet  MATH  Google Scholar 

  65. Li SL, Long SY, Li GY (2010) A topology optimization of moderately thick plates based on the meshless numerical method. Comput Model Eng Sci 60(1):73–94. https://doi.org/10.3970/cmes.2010.060.073

    Article  MathSciNet  MATH  Google Scholar 

  66. Li S, Atluri SN (2008) Topology-optimization of structures based on the MLPG mixed collocation method. Comput Model Eng Sci 26(1):61–74. https://doi.org/10.3970/cmes.2008.026.061

    Article  MATH  Google Scholar 

  67. Zheng J, Long S, Xiong Y, Guangyao L (2008) A topology optimization design for the continuum structure based on the meshless numerical technique. Comput Model Eng Sci 34(2):137–154

    MathSciNet  MATH  Google Scholar 

  68. Lee S-J, Lee C-K and Bae J-E (2009) Evolution of 2D truss structures using topology optimization technique with meshless method. In: Proc. Int. Assoc. Shell Spat. Struct. Symp., pp 1058–1065

  69. Hardy RL (1990) Theory and applications of the multiquadric-biharmonic method. Comput Math Appl 19(8–9):163–208. https://doi.org/10.1016/0898-1221(90)90272-L

    Article  MathSciNet  MATH  Google Scholar 

  70. Huang X, Xie YM (2010) Evolutionary topology optimization of continuum structures. WILEY, Hoboken

    Book  MATH  Google Scholar 

  71. Conlan-Smith C, James KA (2019) A stress-based topology optimization method for heterogeneous structures. Struct Multidiscip Optim 60(1):167–183. https://doi.org/10.1007/s00158-019-02207-9

    Article  MathSciNet  Google Scholar 

  72. Picelli R, Townsend S, Brampton C, Norato J, Kim HA (2018) Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng 329:1–23. https://doi.org/10.1016/j.cma.2017.09.001

    Article  MathSciNet  MATH  Google Scholar 

  73. Xia L, Zhang L, Xia Q, Shi T (2018) Stress-based topology optimization using bi-directional evolutionary structural optimization method. Comput Methods Appl Mech Eng 333:356–370. https://doi.org/10.1016/j.cma.2018.01.035

    Article  MathSciNet  MATH  Google Scholar 

  74. Wang H, Liu J, Qian X, Fan X, Wen G (2017) Continuum structural layout in consideration of the balance of the safety and the properties of structures. Lat Am J Solids Struct 14(6):1143–1169. https://doi.org/10.1590/1679-78253679

    Article  Google Scholar 

  75. Biyikli E, To AC (2015) Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PLoS One 10(12):1–23. https://doi.org/10.1371/journal.pone.0145041

    Article  Google Scholar 

  76. Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47. https://doi.org/10.1007/s00158-012-0880-7

    Article  MathSciNet  MATH  Google Scholar 

  77. Verbart A, Langelaar M, Van Dijk N and Van Keulen F (2012) Level set based topology optimization with stress constraints and consistent sensitivity analysis. In: Collect. Tech. Pap. - AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., pp 1–15. https://doi.org/10.2514/6.2012-1358

  78. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620. https://doi.org/10.1007/s00158-009-0440-y

    Article  Google Scholar 

  79. Ishak MR, Abu Bakar AR, Belhocine A, Taib JM, Omar WZW (2016) Brake torque analysis of fully mechanical parking brake system: Theoretical and experimental approach. Meas J Int Meas Confed 94(June 2017):487–497. https://doi.org/10.1016/j.measurement.2016.08.026

    Article  Google Scholar 

  80. Rinku A and Ananthasuresh GK (2015) Topology and size Optimization of Modular Ribs in aircraft wings. In: 11th World Congr. Struct. Multidiscip. Optim., pp 1–6

Download references

Funding

The authors truly acknowledge the funding provided by Ministério da Ciência, Tecnologia e Ensino Superior—Fundação para a Ciência e a Tecnologia (Portugal), under project funding POCI-01-0145-FEDER-028351 and scholarship RH 028351 UPAL 28/2020. Additionally, the authors acknowledge the funding provided by LAETA, under project UIDB/50022/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Belinha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, D.C., Lopes, J.D.F., Campilho, R.D.S.G. et al. The Radial Point Interpolation Method combined with a bi-directional structural topology optimization algorithm. Engineering with Computers 38, 5137–5151 (2022). https://doi.org/10.1007/s00366-021-01556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01556-8

Keywords

Navigation