Skip to main content
Log in

Topology optimization of continuum structures with displacement constraints based on meshless method

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, the element free Galerkin method (EFG) is applied to carry out the topology optimization of continuum structures with displacement constraints. In the EFG method, the matrices in the discretized system equations are assembled based on the quadrature points. In the sense, the relative density at Gauss quadrature point is employed as design variable. Considering the minimization of weight as an objective function, the mathematical formulation of the topology optimization subjected to displacement constraints is developed using the solid isotropic microstructures with penalization interpolation scheme. Moreover, the approximate explicit function expression between topological variables and displacement constraints are derived. Sensitivity of the objective function is derived based on the adjoint method. Three numerical examples are used to demonstrate the feasibility and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Atluri, S.N., Shen, S.: The meshless local Petrov-Galerkin (MLPG) method. Crest, UK (2002)

    MATH  Google Scholar 

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin method. Int. J. Numer. Meth. Eng. 37, 229–256 (1994a)

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Gu, L., Lu, Y.Y.: Fracture and crack growth by element free Galerkin methods. Model. Simul. Mater. Sci. Eng. 2, 519–534 (1994b)

    Article  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., et al.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  • Belytschko, T., Krysl, P., Krongauz, Y.: A three-dimensional explicit element-free galerkin method. Int. J. Numer. Meth. Fluids 24(12), 1253–1270 (1997)

    Article  MATH  Google Scholar 

  • Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)

    Article  MATH  Google Scholar 

  • Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  • Cho, S., Kwak, J.: Topology design optimization of geometrically non-linear structures using meshfree method. Comput. Methods Appl. Mech. Eng. 195, 5909–5925 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, Z., Wang, Y.Q.: Structural topology optimization based on non-local Shepard interpolation of density field. Comput. Methods Appl. Mech. Eng. 200, 3515–3525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, G.R., Chen, X.L.: A mesh-free method for static and free vibration analyses of thin plates of complicated shape. J. Sound Vib. 241(5), 839–855 (2001)

    Article  Google Scholar 

  • Liu, G.R., Gu, Y.T.: An introduction to meshfree methods and their programming. Springer, Berlin (2005)

    Google Scholar 

  • Liu, W.K., Jun, S., Li, S.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Meth. Eng. 38(10), 1655–1679 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, Z., Zhang, N., Gao, W., et al.: Structural shape and topology optimization using a meshless Galerkin level set method. Int. J. Numer. Meth. Eng. 90, 369–389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, Z., Zhang, N., Wang, Y., et al.: Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Meth. Eng. 93, 443–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Matsui, K., Terada, K.: Continuous approximation of material distribution for topology optimization. Int. J. Numer. Meth. Eng. 59, 1925–1944 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  • Rahmatalla, S.F., Swan, C.C.: A Q4/Q4 continuum structural topology optimization implementation. Struct. Multidiscip. Optim. 27, 130–135 (2004)

    Article  Google Scholar 

  • Rozvany, G., Kirch, U., Bendsoe, M.P., et al.: Layout optimization of structures. Appl. Mech. Rev. 48, 41–119 (1995)

    Article  Google Scholar 

  • Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim. 16(1), 68–75 (1998)

    Article  Google Scholar 

  • Sui, Y.K., Peng, X.R.: The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech. Sin. 22, 68–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M.Y., Wang, X.M., Guo, D.M.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  • Zhang, X., Liu, X.H., Song, K.Z., et al.: Least-squares collocation meshless method. Int. J. Numer. Meth. Eng. 51(9), 1089–1100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, J., Long, S.Y., Xiong, Y.B., et al.: A topology optimization design for the continuum structure based on the meshless numerical technique, CMES. Comput Model. Eng. Sci. 34(2), 137–154 (2008)

    MathSciNet  MATH  Google Scholar 

  • Zhou, M., Rozvany, G.I.N.: The COC algorithm part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)

    Article  Google Scholar 

  • Zhou, J.X., Zou, W.: Meshless approximation combined with implicit topology description for optimization of continua. Struct. Multidisci. Optim. 36(4), 347–353 (2008)

    Article  Google Scholar 

  • Zhou, M., Shyy, Y.K., Thomas, H.L.: Checkerboard and minimum member size control in topology optimization. Struct. Multidiscip. Optim. 21(2), 152–158 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 11202075, No. 11372106), Research Fund for the Doctoral Program of Higher Education of China (No. 20120161120006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zheng, J. & Long, S. Topology optimization of continuum structures with displacement constraints based on meshless method. Int J Mech Mater Des 13, 311–320 (2017). https://doi.org/10.1007/s10999-016-9337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-016-9337-2

Keywords

Navigation