Skip to main content
Log in

Regularity of Gaussian Processes on Dirichlet Spaces

  • Published:
Constructive Approximation Aims and scope

Abstract

We study the regularity of centered Gaussian processes \((Z_x( \omega ))_{x\in M}\), indexed by compact metric spaces \((M, \rho )\). It is shown that the almost everywhere Besov regularity of such a process is (almost) equivalent to the Besov regularity of the covariance \(K(x,y) = {\mathbb E}(Z_x Z_y)\) under the assumption that (i) there is an underlying Dirichlet structure on M that determines the Besov regularity, and (ii) the operator K with kernel K(xy) and the underlying operator A of the Dirichlet structure commute. As an application of this result, we establish the Besov regularity of Gaussian processes indexed by compact homogeneous spaces and, in particular, by the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.J.: An introduction to continuity, extrema, and related topics for general Gaussian processes. Institute of Mathematical Statistics Lecture Notes Monograph Series, 12. Institute of Mathematical Statistics, Hayward, CA (1990)

  2. Adler, R.J., Taylor, J.E.: Random fields and geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  3. Andreev, R., Lang, A.: Kolmogorov–Chentsov theorem and differentiability of random field on manifolds. Potential Anal. 41(3), 761–769 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrew, G., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  6. Askey, R., Bingham, N. H.: Gaussian processes on compact symmetric spaces. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37(2), 127–143 (1976/77)

  7. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic analysis on semigroups. Theory of positive definite and related functions. Graduate Texts in Mathematics, 100. Springer, New York (1984)

  8. Bingham, N.H.: Positive definite functions on spheres. Proc. Camb. Philos. Soc. 73, 145–156 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bochner, S.: Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley (1955)

    MATH  Google Scholar 

  10. Bogachev, V.I.: Gaussian Measures. Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence (1998)

    Book  Google Scholar 

  11. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. de Gruyter Studies in Mathematics, vol. 14. Walter de Gruyter & Co., Berlin (1991)

    Book  MATH  Google Scholar 

  12. Ciesielski, Z., Kerkyacharian, G., Roynette, B.: Quelques espaces fonctionnels associes a des processus Gaussiens. Stud. Math. 107(2), 171–204 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coifman, R., Weiss, G.: Analyse Harmonique Non-commutative sur Certains Espaces homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  14. Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18(5), 995–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. Am. Math. Soc. (N.S.) 39(1), 1–49 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davies, E.B.: Linear Operators and Their Spectra. Cambridge Studies in Advanced Mathematics, vol. 106. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  17. Faraut, J., Harzallah, K.: Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24(3), 171–217 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fernique, X.: Regularité des trajectoires des fonctions aléatoires gaussiennes. École d’Été de Probabilités de Saint-Flour, IV-1974, pp. 1–96. Lecture Notes in Math., Vol. 480, Springer, Berlin (1975)

  19. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. Second revised and extended edition. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin (2011)

  20. Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré Sect. B (N.S.) 3(2), 121–226 (1967)

    MathSciNet  MATH  Google Scholar 

  21. Gine, E., Nickl, R.: Mathematical Foundations of Infinite-Dimensional Statistical Models, p. 690. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  22. Grigor’yan, A.: Heat kernel and analysis on manifolds. AMS/IP Studies in Advanced Mathematics, 47. American Mathematical Society, Providence, RI. International Press, Boston, MA (2009)

  23. Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque 336 , Société Mathématique de France (2011)

  24. Helgason, S.: Differential Geometry and Symmetric Spaces. Pure and Applied Mathematics, vol. XII. Academic Press, New York (1962)

    MATH  Google Scholar 

  25. Herren, V.: Lévy-type processes and Besov spaces. Potential Anal. 7, 689–704 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367(1), 121–189 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Knapik, B.T., van der Vaart, A.W., van Zanten, J.H.: Bayesian inverse problems with Gaussian priors. Ann. Stat. 39(5), 2626–2657 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kyriazis, G., Petrushev, P., Xu, Y.: Jacobi decomposition of weighted Triebel–Lizorkin and Besov spaces. Stud. Math. 186, 161–202 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lang, A., Schwab C.: Isotropic Gaussian random fields on the sphere: regularity, fast simulation, and stochastic partial differential equations. Technical Report 2013-15, Seminar for Applied Mathematics, ETH Zürich (2013)

  30. Ledoux, M.: Isoperimetry and Gaussian analysis. Lectures on Probability Theory and Statistics (Saint-Flour, 1994), 165–294, Lecture Notes in Mathematics, 1648. Springer, Berlin (1996)

  31. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2001)

    Google Scholar 

  32. Ledoux, M., Talagrand, M.: Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 23. Springer, Berlin (1991)

  33. Li, W.V., Shao, Q.M.: Gaussian processes: inequalities, small ball probabilities and applications. Stochastic processes: theory and methods, 533–597, Handbook of Statistcs 19, North-Holland, Amsterdam (2001)

  34. Lifshits, M.: Lectures on Gaussian Processes. Springer Briefs in Mathematics. Springer, Heidelberg (2012)

    Book  Google Scholar 

  35. Luschgy, H., Pages, G.: Expansions for Gaussian processes and Parseval frames. Electron. J. Probab. 14(42), 1198–1221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marcus, M.B., Rosen, J.: Markov Processes, Gaussian Processes, and Local Times. Cambridge Studies in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  37. Narcowich, F., Petrushev, P., Ward, J.: Decomposition of Besov and Triebel–Lizorkin spaces on the sphere. J. Funct. Anal. 238(2), 530–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peetre, J.: New Thoughs on Besov Spaces. Duke University, Durham (1976)

    MATH  Google Scholar 

  39. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  40. Roynette, B.: Mouvement brownien et espaces de Besov. Stoch. Stoch. Rep. 43, 221–260 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Scheuerer, M.: Regularity of the sample paths of a general second order random field. Stoch. Process. Appl. 120, 1879–1897 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schilling, R.L., Song, R., Vondracek, Z.: Bernstein Functions, Theory and Applications Studies in Mathematics. De Gruyter, Berlin (2010)

    MATH  Google Scholar 

  43. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  44. Seeger, M.: Gaussian processes for machine learning. Int. J. Neural Syst. 14(02), 69–106 (2004)

    Article  Google Scholar 

  45. Slutsky, E.E.: Qualche proposizione relativa alla teoria delle funzioni aleatorie. Giorn. Ist. Ital. Attuari 8, 183–199 (1937)

    MATH  Google Scholar 

  46. Steinwart I.: Convergence types and rates in generic Karhunen-Loève expansions with applications to sample path properties. Technical Report 2014-007, Fakultät für Mathematik und Physik, Universität Stuttgart (2014)

  47. Steinwart, I., Christmann, A.: Support Vector Machines. Information Science and Statistics. Springer, New York (2008)

    MATH  Google Scholar 

  48. Steinwart, I., Scovel, C.: Mercer’s theorem on general domains: on the interaction between measures, kernels, and RKHSs. Constr. Approx. 35, 365–417 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sturm, K.T.: Analysis on local Dirichlet spaces I. Recurrence, conservatisness and \(L_p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MathSciNet  Google Scholar 

  50. Sturm, K.T.: Analysis on local Dirichlet spaces II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  51. Sturm, K.T.: Analysis on local Dirichlet spaces III. The parabolic Harnack inequality. J. Math. Pures Appl. 75(3), 273–297 (1998)

    MathSciNet  MATH  Google Scholar 

  52. Sturm, K.T.: The geometric aspect of Dirichlet forms. New directions in Dirichlet forms, 233–277, AMS/IP Studies in Advanced Mathematics, vol. 8. American Mathematical Society, Providence (1998)

  53. Talagrand, M.: Regularity of Gaussian processes. Acta Math. 159(1–2), 99–149 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  54. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  55. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  56. van der Vaart, A., van Zanten, H.: Bayesian inference with rescaled Gaussian process priors. Electron. J. Stat. 1, 433–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Picard.

Additional information

Communicated by Vladimir N. Temlyakov.

G. Kerkyacharian and D. Picard have been supported by ANR Forewer. P. Petrushev has been supported by NSF Grant DMS-1714369. S. Ogawa has been supported by JSPS Grant No 26400152.

Appendices

Appendices

1.1 Appendix I: Positive and Negative Definite Functions

We recall in this appendix some well-known (or not so well-known) facts about positive definite and negative definite functions. For details, we refer the reader to [5, 7, 9, 17, 43].

Recall first the definitions of positive and negative definite functions:

Definition 8.1

Given a set M, a real-valued function K(xy) defined on \(M\times M\) is said to be positive definite (P.D.) if \(K(x,y)=K(y,x)\), \(\forall x, y\in M\), and

$$\begin{aligned} \forall \alpha _1,\ldots ,\alpha _n \in {\mathbb R},\; \forall x_1,\ldots ,x_n\in M, \quad \sum _{i,j=1}^n\alpha _i\alpha _j K(x_i,x_j)\ge 0. \end{aligned}$$

Clearly, if K(xy) is P.D., then \(|K(x,y)| \le \sqrt{K(x,x)}\sqrt{K(y,y)}.\) It is well known that the following characterization is valid:

$$\begin{aligned} K(x,y) \; \hbox {is P.D.}\quad \Longleftrightarrow \quad K(x,y)= {\mathbb E}(Z_xZ_y), \end{aligned}$$

where \((Z_x)_{x\in M}\) is some (centered ) Gaussian process.

Definition 8.2

For any \(u\in M\), we associate with K(xy) the following P.D. function:

$$\begin{aligned} K_u(x,y) := K(x,y)+ K(u,u)-K(x,u)-K(y,u)= {\mathbb E}[(Z_x-Z_u)(Z_y-Z_u)], \end{aligned}$$

where \((Z_x-Z_u)\) is the process “killed” at the point \(u\in M.\)

Clearly,

$$\begin{aligned} K_u \equiv K\Longleftrightarrow K(u,u)=0. \end{aligned}$$

Definition 8.3

Given a set M, a real-valued function \(\psi (x,y)\) defined on \(M\times M\) is said to be negative definite (N.D.) if

$$\begin{aligned}&\psi (x,y)=\psi (y,x),\;\; \forall x, y\in M, \quad \psi (x,x)\equiv 0, \quad \hbox {and}\\&\forall \alpha _1,\ldots ,\alpha _n \in {\mathbb R}\;\;\hbox {s.t.}\;\; \sum _i \alpha _i=0, \;\; \forall x_1,\ldots , x_n\in M, \quad \sum _{i,j=1}^n \alpha _i\alpha _j \psi (x_i,x_j)\le 0. \end{aligned}$$

The following characterization is valid (see, e.g., [7, Proposition 3.2]):

$$\begin{aligned} \psi (x,y) \;\hbox { is N.D.}\quad \Longleftrightarrow \quad \psi (x,y)= {\mathbb E}(Z_x-Z_y)^2, \end{aligned}$$

where \((Z_x)_{x\in M}\) is some Gaussian process.

Consequently, if \(\psi (x,y)\) is N.D., then \(\psi (x,y) \ge 0\), \(\forall x,y \in M\), and \(\sqrt{\psi (x,y)}\) verifies the triangular inequality.

The following proposition is easy to verify.

Proposition 8.4

(a) Let K(xy) be a P.D. kernel on a set M, and set

$$\begin{aligned} \psi _K(x,y):= K(x,x)+ K(y,y)- 2K(x,y). \end{aligned}$$
(8.1)

Then \(\psi _K\) is negative definite. The function \(\psi _K\) will be termed the N.D. function associated with K. In fact, if \(K(x,y)= {\mathbb E}(Z_x Z_y)\), then \(\psi _K(x,y)= {\mathbb E}(Z_x-Z_y)^2\). Furthermore, \(\psi _K \equiv \psi _{K_u}\), \(\forall u\in M\).

(b) Let \(\psi \) be a N.D. function, and for any \(u\in M\), define

$$\begin{aligned} N(u,\psi )(x,y):=\frac{1}{2} [\psi (x,u)+\psi (y,u)-\psi (x,y)]. \end{aligned}$$

Thus, if \(\psi (x,y)= {\mathbb E}(Z_x-Z_y)^2\), then \(N(u,\psi )(x,y) :={\mathbb E}\big [(Z_x-Z_u)(Z_y-Z_u)\big ]\). Then \(N(u,\psi )\) is P.D. Moreover,

$$\begin{aligned} N(u,\psi _K)=K_u. \end{aligned}$$

(c) If K is P.D., then \(K(x,y) \equiv {\text {constant}}\Longleftrightarrow \psi _K \equiv 0\).

Proposition 8.5

Let \(\psi (x,y)\) be a real-valued continuous N.D. function on the compact space M, \(\mu \) a positive Radon measure, with support M, and set

$$\begin{aligned} \tilde{K}(x,y):= \frac{1}{2|M|} \int _M [\psi (x,u) + \psi (y,u) -\psi (x,y)] d\mu (u). \end{aligned}$$

Then

(a) \(\tilde{K}\) is positive definite, and \(\psi _{\tilde{K}}=\psi \).

(b) \({\mathbb {1}}\) is an eigenfunction of the operator \(\tilde{K}\) with kernel \(\tilde{K}(x, y)\); that is,

$$\begin{aligned} \int _M \tilde{K}(x,y) d\mu (y) \equiv \tilde{\lambda } , \quad \tilde{\lambda }= \frac{1}{2|M|}\int _M\int _M \psi (u,y)d\mu (u) d\mu (y) (\ge 0). \end{aligned}$$

(c)

$$\begin{aligned} \exists z \in M \;\;\hbox {s.t.}\;\; \tilde{K}(z,z)=0 \;\Longleftrightarrow \; \tilde{K}(x,y) \equiv 0 \;\Longleftrightarrow \; \psi (x,y) \equiv 0. \end{aligned}$$

Proof

Parts (a) and (b) are straightforward. For the proof of (c), we first observe the obvious implications:

$$\begin{aligned} \psi (x,y) \equiv 0 \; \Longrightarrow \; \tilde{K}(x,y) \equiv 0 \; \Longrightarrow \; \tilde{K}(z,z)=0, \; \forall z\in M. \end{aligned}$$

Now, let \(\tilde{K}(z,z)=0\) for some \(z\in M\). Then

$$\begin{aligned} \frac{1}{2|M|} \int _M [\psi (z,u) + \psi (z,u) -\psi (z,z)] d\mu (u)=0. \end{aligned}$$

By definition, \(\psi (z,z)=0\), and hence \(\int _M \psi (z,u)d\mu (u)=0\). However, \(\psi (z,u)\) is continuous, \(\psi (z,u)\ge 0\), and \({\text {supp}}\,(\mu )=M\). Therefore, \(\psi (z,u)=0\), \(\forall u\in M\). Now, by the triangle inequality, we obtain for \( x,y \in M\),

$$\begin{aligned} 0\le \sqrt{\psi (x,y)} \le \sqrt{\psi (x,z)} +\sqrt{\psi (z,y)} =0, \end{aligned}$$

and hence \(\psi (x,y) \equiv 0\). This completes the proof. \(\square \)

Remark 8.6

One can verify easily that if K(xy) is P.D. on M, then

$$\begin{aligned} K_u(x,y)&:= K(x,y) +K(u,u)-K(x,u)-K(y,u)\\&= \frac{1}{2} [\psi _K(x,u) + \psi _K(y,u) -\psi _K(x,y)]. \end{aligned}$$

The proof of the following proposition is straightforward.

Proposition 8.7

Let M be a compact space, equipped with a Radon measure \(\mu \). Assume that K(xy) is a continuous P.D. kernel, and as previously, let

$$\begin{aligned} \psi (x, y):=\psi _K(x, y)= K(x,x)+ K(y,y)- 2K(x,y) \; \hbox { be the associated N.D. kernel}, \end{aligned}$$
$$\begin{aligned} K_u(x,y)&:= K(x,y) +K(u,u)-K(x,u)-K(y,u) \\&= \frac{1}{2} [\psi (x,u) + \psi (y,u) -\psi (x,y)],\\ \tilde{K}(x,y)&:= \frac{1}{2|M|} \int _M [\psi (x,u) + \psi (y,u) -\psi (x,y)] d\mu (u)\\&= \frac{1}{|M|}\int _M K_u(x,y) d\mu (u). \end{aligned}$$

Denote by K and \(\tilde{K}\) the operators with kernels K(xy) and \(\tilde{K}(x, y)\). Then

$$\begin{aligned} \tilde{K}(x,y)= K(x,y) + |M|^{-1}{\text {Tr}}(K) - |M|^{-1} K{\mathbb {1}}(x) - |M|^{-1}K{\mathbb {1}}(y). \end{aligned}$$
(8.2)

Moreover, \(\psi _{\tilde{K}} =\psi \), \(\tilde{K}_u=K_u\), and \(\tilde{K}{\mathbb {1}}= \tilde{\lambda } {\mathbb {1}}\), where

$$\begin{aligned} \tilde{\lambda }&= Tr(K)-\frac{1}{|M|}\int _M\int _M K(x,y)d\mu (x)d\mu (y) \\&= \frac{1}{2|M|}\int _M\int _M \psi (u,y)d\mu (u) d\mu (y) \ge 0. \end{aligned}$$

In addition,

$$\begin{aligned} K= \tilde{K} + C \; \Longleftrightarrow \; K{\mathbb {1}}= \lambda {\mathbb {1}}, \end{aligned}$$
(8.3)

and, if so, \(\tilde{\lambda } = ({\text {Tr}}(K)- \lambda )\), \(C=\frac{1}{|M|}(Tr(K)-2\lambda )\).

Remark 8.8

The following useful assertions can be found in, e.g., [7, 9, 42, 43]. For N.D. functions, there exists a functional calculus that has no equivalent for P.D. functions:

  1. (1)

    Let F be a bounded completely continuous function, i.e.,

    $$\begin{aligned} \forall z>0, \;\forall n \in {\mathbb N}, \; D^nF(z) \ge 0 \end{aligned}$$

    or equivalently,

    $$\begin{aligned} F(z)= \int _0^\infty e^{-tz} d\mu (t), \;\; \mu \ge 0,\;\; \mu ([0, \infty ))<\infty . \end{aligned}$$

    Then

    $$\begin{aligned} \psi \; \hbox {is N.D.} \Longrightarrow F(\psi )\; \hbox {is P.D.} \end{aligned}$$
  2. (2)

    If G is a Bernstein function, i.e.,

    $$\begin{aligned} G(z)= az + \int _0^\infty (1-e^{-tz}) d\mu (t), \;\; a \ge 0, \;; \mu \ge 0, \;\; \int _0^\infty \frac{t}{1+t}d\mu (t) <\infty , \end{aligned}$$

    then

    $$\begin{aligned} \psi \hbox { N.D.} \Longrightarrow G(\psi ) \hbox { is N.D.} \end{aligned}$$

    For instance, we have:

    $$\begin{aligned} \psi \;\hbox {is N.D.} \;&\Longleftrightarrow \forall t>0, \; e^{-t \psi } \;\hbox {is P.D.},\\ \psi \; \hbox {is N.D.} \;&\Longrightarrow \forall \; 0<\alpha \le 1, \; \psi ^{\alpha } \;\hbox {is N.D.},\\ \psi \; \hbox {is N.D.} \;&\Longrightarrow \; \log (1+\psi ) \;\hbox {is N.D.} \end{aligned}$$

1.2 Appendix II: Gaussian Probability on Separable Banach Spaces

For a detailed account of the material in this section, we refer the reader to [10].

Let E be a Banach space, and let \(\mathcal {B}(E)\) be the sigma-algebra of Borel sets on E. Let \(E^*\) be its topological dual, and assume \(\mathcal {F}\) is a vector space of real-valued functions defined on E, and \(\gamma (\mathcal {F},E)\) is the sigma-algebra generated by \(\mathcal {F}\).

If \(\mathcal {F}= \mathcal {C}_{b}(E,{\mathbb R})\) is the vector space of continuous bounded functions on E, then \(\gamma (\mathcal {C}_{b}(E,{\mathbb R}),E)= \mathcal {B}(E)\) is the Borel sigma-algebra.

If E is separable, it is well known that the sigma-algebra \(\gamma (E^*,E)\) generated by \(E^*\) is \(\mathcal {B}(E)\) .

Proposition 8.9

Let E be a separable Banach space. Let H be a subspace of \(E^*\), endowed with the \(\sigma (E^*,E)\) topology. Then

$$\begin{aligned} H \hbox { is closed }\; \Longleftrightarrow \; H\hbox { is stable by simple limit}. \end{aligned}$$

Proof

The implication \(\Rightarrow \) is obvious. We now prove \(\Leftarrow \). By the Banach–Krein–Smulian theorem, H is \( \sigma (E^*,E)\)-closed if and only if \(\forall R>0\), \(B(0,R) \cap H\) is \(\sigma (E^*,E)\)-closed. As E is a separable Banach space, we have: For all \(R>0\),

$$\begin{aligned} B(0,R)=\{f\in E^*: \Vert f\Vert _{E^*} \le R\} \; \hbox {is metrizable (and compact) for }\; \sigma (E^*,E). \end{aligned}$$

Hence we only have to verify that for every sequence \((f_n) \subset B(0,R) \cap H\) such that \(\lim _{n \mapsto \infty } f_n= f\) in the \(\sigma (E^*,E)-\)topology, we have \(f \in B(0,R) \cap H\). But clearly, this implies \(\forall x\in E, \; \lim _{n\mapsto \infty } f_n(x)=f(x)\), so we have \(f \in B(0,R) \cap H\). \(\square \)

Corollary 8.10

Let E be a separable Banach space and H a subspace of \(E^*\). Then:

  1. (1)

    \(\overline{H}^{\sigma (E^*,E)}\) coincides with the smallest vector space of functions on E, stable by simple limits containing H.

  2. (2)
    $$\begin{aligned} \gamma (H,E)= \gamma (\overline{H}^{\sigma (E^*,E)},E). \end{aligned}$$
  3. (3)

    If H is a subspace of \(E^*\) separating E, then

    $$\begin{aligned} \gamma (H,E)= \gamma (E^*,E)=\mathcal {B}(E). \end{aligned}$$

Proof

(1) Clearly, as \(E^*\) is stable by simple limits (by the Banach–Steinhaus theorem), the smallest vector space of functions on E, stable by simple limits containing H, is contained in \(E^*\); hence, by the preceding proposition, it is \(\overline{H}^{\sigma (E^*,E)}\).

(2) Let \(\gamma (H,E)\) is the sigma-algebra generated by H. The vector subspace \(V= \{u \in E^*: u, \; \gamma (H,E)- \hbox {measurable} \}\) is stable by simple limits. Hence, \(\overline{H}^{\sigma (E^*,E)} \subset V\).

(3) By the Hahn–Banach theorem, if H is separating, \(\overline{H}^{\sigma (E^*,E)}= E^*\), and hence

$$\begin{aligned} \gamma (H,E)= \gamma (E^*,E)=\mathcal {B}(E). \end{aligned}$$

\(\square \)

Lemma 8.11

Let E be a separable Banach space, and H be a subspace of \(E^*\) separating E. There is at most one probability measure P on the Borel sets of E such that, under P, \(\gamma \in H\) is a centered Gaussian variable with a given covariance \(K(\gamma ,\gamma '):\)

$$\begin{aligned} K(\gamma ,\gamma ')=\int _E \gamma (\omega ) \gamma '(\omega ) DP(\omega ) \end{aligned}$$

on H. Moreover, if such a probability exists, then:

  1. (1)

    \(E^*\) is a Gaussian space, and \( \overline{E^*}^{L^2(E,P)}\) is the Gaussian space generated by H.

  2. (2)

    There exists \(\alpha >0\) such that

    $$\begin{aligned} \int _{E} e^{\alpha \Vert x \Vert _E^2} dP(x) <\infty . \end{aligned}$$
    (8.4)

Proof

If \(K(\gamma ,\gamma ')\) is a positive definite function on H, it determines an additive function on the algebra of cylindrical sets related to H:

$$\begin{aligned} \big \{x\in E: (\gamma _1(x),\ldots ,\gamma _n(x) ) \in C\big \}, \; \gamma _i \in H, \; C \; \hbox { Borel set of}\; {\mathbb R}^n. \end{aligned}$$

Now, the sigma-algebra generated by this algebra is the Borel sigma-algebra of E.

Assume that such a probability P exists. Let \(\mathcal {H}= E^* \cap \overline{H}^{L^2(E,P)}\). Clearly, \(\overline{H}^{L^2(E,P)}\) is the Gaussian space generated by H, and if \((\gamma _n)_{n\ge 1} \in \mathcal {H}\) is such that \(\forall x \in E\), \(\lim _{n\mapsto \infty }\gamma _n(x)= \gamma (x)\) exists, then clearly \(\gamma \in E^*\) by the Banach–Stheinhauss theorem, and \(\gamma \in \overline{H}^{L^2(E,P)}\) since a simple limit of random variables in a closed Gaussian space belongs to this Gaussian space. Therefore, \(\gamma \in \mathcal {H}\), which by Proposition 8.9 implies that \(\mathcal {H}\) is closed. But \(H \subset \mathcal {H}\) and \(\overline{H}^{\sigma (E^*,E)}= E^*\) leads to \(\mathcal {H}= E^*\).

Finally, (8.4) is just the Fernique theorem. \(\square \)

1.2.1 Cameron–Martin Space

Let us recall that, due to the Fernique theorem and Bochner integration, we have the following map from \(E^*\) to E :

$$\begin{aligned} I: \gamma \in E^* \mapsto \int ^E_E \omega \gamma (\omega )dP(\omega ) \in E \end{aligned}$$

as

$$\begin{aligned} \Big \Vert \int ^E_E \omega \gamma (\omega )dP(\omega )\Big \Vert _E \le \int ^E \Vert \omega \Vert |\gamma (\omega )|dP(\omega ) \le \Big (\int ^E \Vert \omega \Vert ^2 |dP(\omega )\Big )^{\frac{1}{2}} \Vert \gamma \Vert _{L^2(P,E)} \end{aligned}$$

and

$$\begin{aligned} \gamma '(I(\gamma )) = \int _E \gamma '(\omega ) \gamma (\omega )dP(\omega ), \quad \forall \gamma , \gamma ' \in E^*. \end{aligned}$$

Therefore, I can be extended to \( \bar{I}: \overline{E^*}^{L^2(E,P)} \mapsto E\). The subspace

$$\begin{aligned}{\mathbb H}\subset E, \quad {\mathbb H}= \bar{I}(\overline{E^*}^{L^2(E,P)}) \end{aligned}$$

with the induced Hilbert structure is the Cameron–Martin space associated with the Gaussian probability space \((E, \mathcal {B}(E),P) \) (see [10]).

1.3 Important Special Case

Let M be a set, and let E be a separable Banach space of real-valued functions on M. Let

$$\begin{aligned} \forall x \in M, \; f \in E \xrightarrow {\delta _x} f(x) \in {\mathbb R}. \end{aligned}$$

Suppose \( \delta _x \in E^* \). So, \(\mathcal {H}=\{ \sum _\mathrm{finite} \alpha _i \delta _{x_i}\} \) is dense in \(E^*\) in the \(\sigma (E^*,E)-\) topology.

Let K(xy) be a positive definite function on \(M\times M\). There is at most one probability measure P on the Borel sets of E such that, under P, \(E^*\) is a Gaussian space and \((\delta _x)_{x\in M}\) is a centered Gaussian process with covariance

$$\begin{aligned} K(x,y)= \int _E \delta _x(\omega ) \delta _y(\omega )dP(\omega ), \;\;\hbox {i.e.}, \;\; \int _E e^{-i t \delta _x(\omega )} dP(\omega ) = e^{-\frac{1}{2}t^2 K(x,x)},\;\; \forall t \in {\mathbb R}. \end{aligned}$$

The Cameron–Martin space is identified with the Reproducing Kernel Hilbert Space \({\mathbb H}_K\) associated with K, i.e., the closure of

$$\begin{aligned} \Big \{ y \in M \mapsto f(y)=\sum _i \lambda _i K(x_i,y) \}; \quad \Vert f \Vert ^2_{{\mathbb H}_K}= \sum _{i,j} \lambda _i \lambda _j K(x_i,x_j) \Big \}. \end{aligned}$$

\({\mathbb H}_K\) is characterized as a Hilbert space of functions on M such that

$$\begin{aligned} \forall x\in M, f \in {\mathbb H}_K \mapsto f(x)= \langle K(x,.), f \rangle _{{\mathbb H}_K} \; (\hbox {is continuous}). \end{aligned}$$

Therefore, if such a P exists on E, then \({\mathbb H}_K \subseteq M\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerkyacharian, G., Ogawa, S., Petrushev, P. et al. Regularity of Gaussian Processes on Dirichlet Spaces. Constr Approx 47, 277–320 (2018). https://doi.org/10.1007/s00365-018-9416-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-018-9416-8

Keywords

Mathematics Subject Classification

Navigation