Skip to main content
Log in

Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of the \(\nu \)-symmetric Riemann sums for functionals of a self-similar centered Gaussian process X with increment exponent \(0<\alpha <1\). We prove that, under mild assumptions on the covariance of X, the law of the weak \(\nu \)-symmetric Riemann sums converge in the Skorohod topology when \(\alpha =(2\ell +1)^{-1}\), where \(\ell \) denotes the largest positive integer satisfying \(\int _{0}^{1}x^{2j}\nu (\mathrm{d}x)=(2j+1)^{-1}\) for all \(j=0,\dots , \ell -1\). In the case \(\alpha >(2\ell +1)^{-1}\), we prove that the convergence holds in probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  2. Binotto, G., Nourdin, I., Nualart, D.: Weak symmetric integrals with respect to the fractional Brownian motion. submitted (2016)

  3. Bojdecki, T., Gorostiza, L., Talarczyk, A.: Sub-fractional Brownian motion and its relation to occupation times. Stat. Probab. Lett. 69(4), 405–419 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheridito, P., Nualart, D.: Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter \(H\) in (0, 1/2). Ann. Inst. Henri Poincaré Probab. Stat. 41(6), 1049–1081 (2005)

    Article  MATH  Google Scholar 

  5. Corcuera, J.M., Nualart, D., Woerner, J.H.C.: Power variation of some integral fractional processes. Bernoulli 12(4), 713–735 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Chavez, J.R., Tudor, C.: A decomposition of sub-fractional Brownian motion. Math. Rep. 11(61), 67–74 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Durieu, O., Wang, Y.: From infinite urn schemes to decompositions of self-similar Gaussian processes. Electron. J. Probab. 21(43), 1–23 (2015)

    Google Scholar 

  8. Gradinaru, M., Nourdin, I., Russo, F., Vallois, P.: \(m\)-order integrals and generalized Itô’s formula: the case of a fractional Brownian motion with any Hurst index. Ann. Inst. Henri Poincaré Probab. Stat. 41(4), 781–806 (2005)

    Article  MATH  Google Scholar 

  9. Harnett, D., Nualart, D.: Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes. Stoch. Proc. Appl. 122(10), 3460–3505 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harnett, D., Nualart, D.: Central limit theorem for a Stratonovich integral with Malliavin calculus. Ann. Probab. 41(4), 2820–2879 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harnett, D., Nualart, D.: On Simpson’s rule and fractional Brownian motion with \(\text{ H } = 1/10\). J. Theor. Probab. 28(2), 1651–1688 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harnett, D., Nualart, D.: Central limit theorem for functionals of a generalized self-similar Gaussian process. Stoch. Proc. Appl. 128(2), 404–425 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Houdré, C., Villa, J.: An example of infinite dimensional quasi–helix. Contemp. Math. 336, 3–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, Y., Nualart, D.: Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 80(11–12), 1030–1038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lei, P., Nualart, D.: A decomposition of the bifractional Brownian motion and some applications. Stat. Probab. Lett. 75(9), 619–624 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Nourdin, I., Nualart, D.: Central limit theorems for multiple Skorokhod integrals. J. Theor. Probab. 23(1), 39–64 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  18. Nourdin, I., Nualart, D., Tudor, C.A.: Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 46(4), 1055–1079 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nourdin, I., Révaillac, A., Swanson, J.: The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Electron. J. Probab. 15(70), 2087–2116 (2010)

    MathSciNet  Google Scholar 

  20. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Nualart, D., Peccati, G.: Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 177–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nualart, D., Ortiz-Latorre, S.: Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Proc. Appl. 118(4), 614–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peccati, G., Tudor, C.A.: Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII. 1857, 247–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Russo, F., Tudor, C.A.: On bifractional Brownian motion. Stoch. Proc. Appl. 116(5), 830–856 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Swanson, J.: Weak convergence of the scaled median of independent Brownian motions. Probab. Theory Relat. Fields 138(1–2), 269–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Swanson, J.: Fluctuations of the empirical quantiles of independent Brownian motions. Stoch. Process Appl. 121(3), 479–514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous referee for his/her very careful reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Jaramillo.

Additional information

D. Nualart was supported by the NSF Grant DMS1512891.

Appendix

Appendix

The following lemmas are estimations on the covariances of increments of X. The proof of these results relies on some technical lemmas proved by Nualart and Harnett in [12]. In what follows C is a generic constant depending only on the covariance of the process X.

Lemma 5.1

Under (H.1), for \(0<s\le t\) we have

$$\begin{aligned} {\mathbb E}\left[ (X_{t+s} - X_t)^2\right] = 2\lambda t^{2\beta -\alpha }s^\alpha + g_1(t,s), \end{aligned}$$

where \(|g_1(t,s)| \le C st^{2\beta -1}\).

Proof

See [12, Lemma 3.1] and notice that the proof only uses that \(|\psi '|\) is bounded in (1, 2]. \(\square \)

Remark 5.2

Notice that \(g_1(t,s)\) satisfies \(|g_1(t,s)| \le C s^{\alpha } t^{2\beta -\alpha }\), because \(\alpha <1\) and \(\alpha \le 2\beta \). Therefore, for any \(0<s\le t\), we obtain

$$\begin{aligned} {\mathbb E}\left[ (X_{t+s} - X_t)^2\right] \le C s^{\alpha } t^{2\beta -\alpha }. \end{aligned}$$

With the notation of Sect. 2.3, this implies

$$\begin{aligned} \xi ^2_{j,n} \le Cn^{-2\beta } j^{2\beta -\alpha }. \end{aligned}$$
(5.1)

On the other hand, we deduce that for every \(T>0\), there exists \(C>0\), which depends on T and the covariance of X, such that

$$\begin{aligned} \sup _{0\le t\le \left\lfloor nT\right\rfloor }\mathbb {E}\left[ \Delta X_{\frac{t}{n}}^{2}\right] \le C n^{-\alpha }. \end{aligned}$$
(5.2)

Lemma 5.3

Let jkn be integers with \(n\ge 6\) and \(1\le j\le k\). Under (H.1)-(H.2), we have the following estimates:

  1. (a)

    If \(j+3\le k\le 2j+2\), then

    $$\begin{aligned} \left| \mathbb {E}\left[ \Delta X_{\frac{j}{n}}\Delta X_{\frac{k}{n}} \right] \right| \le Cn^{-2\beta }j^{2\beta -\alpha }k^{\alpha -2}. \end{aligned}$$
    (5.3)
  2. (b)

    If \(k\ge 2j+2\), then

    $$\begin{aligned} \left| \mathbb {E}\left[ \Delta X_{\frac{j}{n}}\Delta X_{\frac{k}{n}} \right] \right| \le Cn^{-2\beta }j^{2\beta +\nu -2}k^{-\nu }. \end{aligned}$$
    (5.4)

Proof

We have

$$\begin{aligned} {\mathbb E}\left[ \Delta X_{\frac{k}{n}} \Delta X_{\frac{j}{n}}\right]&= n^{-2\beta }(j+1)^{2\beta }\left( \phi \left( \frac{k+1}{j+1}\right) - \phi \left( \frac{k}{j+1}\right) \right) \\&\qquad \quad -\,n^{-2\beta }j^{2\beta }\left( \phi \left( \frac{k+1}{j}\right) - \phi \left( \frac{k}{j}\right) \right) \\&= n^{-2\beta }\left( (j+1)^{2\beta }-j^{2\beta }\right) \left( \phi \left( \frac{k+1}{j+1}\right) - \phi \left( \frac{k}{j+1}\right) \right) \\&\qquad \quad +\,n^{-2\beta }j^{2\beta }\left[ \phi \left( \frac{k+1}{j+1}\right) - \phi \left( \frac{k}{j+1}\right) - \phi \left( \frac{k+1}{j}\right) + \phi \left( \frac{k}{j}\right) \right] . \end{aligned}$$

We first show (5.3). Condition \(j+3 \le k \le 2j+2\) implies that the interval \(\left[ \frac{k}{j+1}, \frac{k+1}{j} \right] \) is included in the interval [1, 5]. Therefore, using (1.8) and (1.9), we deduce that there exists a constant \(C>0\) such that for all \(x\in \left[ \frac{k}{j+1}, \frac{k+1}{j} \right] \),

$$\begin{aligned} \left| \phi ' \left( x \right) \right| \le C(k/j)^{\alpha -1}. \end{aligned}$$

and

$$\begin{aligned} \left| \phi ''\left( x \right) \right| \le C(k/j)^{\alpha -2}. \end{aligned}$$

The estimate (5.3) follows easily from the Mean Value Theorem.

On the other hand, \(k\ge 2j+2\) implies that the interval \(\left[ \frac{k}{j+1}, \frac{k+1}{j} \right] \) is included in the interval \([2, \infty ]\). Therefore, using (1.8) and (1.9), we deduce that there exists a constant \(C>0\) such that for all \(x\in \left[ \frac{k}{j+1}, \frac{k+1}{j} \right] \),

$$\begin{aligned} \left| \phi ' \left( x \right) \right| \le C(k/j)^{-\nu }. \end{aligned}$$

and

$$\begin{aligned} \left| \phi ''\left( x \right) \right| \le C(k/j)^{-\nu -1}. \end{aligned}$$

Therefore, estimate (5.4) follows easily from the Mean Value Theorem. The proof of the lemma is now complete. \(\square \)

Last, we have two technical results that have been used in the proofs of Theorems 1.5 and 1.6. For a fixed integer n and nonnegative real \(t_{1},t_{2}\), note that the notation of Sect. 2.3 gives

$$\begin{aligned} \mathbb {E}[\Delta X_{\frac{t_{1}}{n}}\Delta X_{\frac{t_{2}}{n}}]=\left\langle \partial _{\frac{t_{1}}{n}},\partial _{\frac{t_{2}}{n}} \right\rangle _{{\mathfrak H}}. \end{aligned}$$

Lemma 5.4

Assume X satisfies (H.1) and (H.2). Then, for any integer \(n\ge 2\) and real \(T>0\), there is a constant C is a constant which depends on T and the covariance of X, such that

$$\begin{aligned} \sup _{0\le k\le \lfloor nT \rfloor -1}\sum _{j=0}^{\lfloor nT \rfloor -1}\left| \left\langle \partial _{\frac{j}{n}}, \partial _{\frac{k}{n}}\right\rangle _{\mathfrak H}\right| \le Cn^{-\alpha }. \end{aligned}$$
(5.5)

Proof

In view of the estimate (5.2), we can assume that \(n\ge 6\) and \(4\le j+3 \le k\) or \(4\le k+3 \le j\). If \(4\le j+3 \le k\), from the estimates (5.3) and (5.4), we deduce

$$\begin{aligned} \left| \left\langle \partial _{\frac{j}{n}}, \partial _{\frac{k}{n}}\right\rangle _{\mathfrak H}\right| \le C n^{-2\beta } j^{2\beta -2}. \end{aligned}$$

Summing in the index j, we get the desired result, because \(2\beta -1 \le 0\) and \(2\beta \ge \alpha \). On the other hand, if \(4\le k+3 \le j\le 2k+2\), the estimates (5.3) yields

$$\begin{aligned} \left| \left\langle \partial _{\frac{j}{n}}, \partial _{\frac{k}{n}}\right\rangle _{\mathfrak H}\right| \le C n^{-2\beta } k^{2\beta -\alpha } j^{\alpha -2} \le C n^{-\alpha } j^{\alpha -2}, \end{aligned}$$

which gives the desired estimate. Finally, if \(4\le k+3\) and \(2k+2 \le j\), the estimate (5.4) yields

$$\begin{aligned} \left| \left\langle \partial _{\frac{j}{n}}, \partial _{\frac{k}{n}}\right\rangle _{\mathfrak H}\right| \le C n^{-2\beta } k^{2\beta +\nu -2} j^{-\nu }. \end{aligned}$$

If \(\alpha +\nu -2 \le 0\), then summing the above estimate in j we obtain the bound

$$\begin{aligned} Cn^{-2\beta } k^{2\beta -\alpha + (\alpha +\nu -2)} \le Cn^{-\alpha }. \end{aligned}$$

On the other hand, if \(\alpha +\nu -2 >0\), then

$$\begin{aligned} C n^{-2\beta } k^{2\beta +\nu -2} j^{-\nu } \le C n^{-2\beta } k^{2\beta -\alpha } \left( \frac{k}{j} \right) ^{\alpha +\nu -2} j^{\alpha -2} \le C n^{-\alpha } j^{\alpha -2} \end{aligned}$$

and summing in j we get the desired bound. \(\square \)

Lemma 5.5

Assume that \(0<\alpha <1\) and let \(n\ge 1\) be an integer. Then, for every \(r\in \mathbb {N}\) and \(T\ge 0\),

$$\begin{aligned} \sum _{j=0}^{\left\lfloor nT\right\rfloor -1}\left| \left\langle \partial _{\frac{j}{n}},\widetilde{\varepsilon }_{\frac{j}{n}} \right\rangle _{{\mathfrak H}}\right| ^{r}\le Cn^{-2\beta (r-1)}. \end{aligned}$$
(5.6)

Proof

By (1.2),

$$\begin{aligned} \left\langle \partial _{\frac{j}{n}},\widetilde{\varepsilon }_{\frac{j}{n}} \right\rangle _{{\mathfrak H}} =\frac{1}{2}\mathbb {E}\left[ (X_{\frac{j+1}{n}}-X_{\frac{j}{n}})(X_{\frac{j+1}{n}}+X_{\frac{j}{n}})\right] =\frac{1}{2}\mathbb {E}\left[ X_{\frac{j+1}{n}}^2-X_{\frac{j}{n}}^2\right] =\phi (1)\Psi _{n}(j), \end{aligned}$$

where

$$\begin{aligned} \Psi _{n}(j) =\left( \left( \frac{j+1}{n}\right) ^{2\beta }-\left( \frac{j}{n}\right) ^{2\beta }\right) . \end{aligned}$$

We can easily show that \(\Psi _{n}(j)\le C n^{-2\beta }\), and hence,

$$\begin{aligned} \sum _{j=0}^{\left\lfloor nT\right\rfloor -1}\left| \left\langle \partial _{\frac{j}{n}},\widetilde{\varepsilon }_{\frac{j}{n}} \right\rangle _{{\mathfrak H}}\right| ^r =\phi (1)^{r}\sum _{j=0}^{\left\lfloor nT\right\rfloor -1}\Psi _{n}(j)^r\le Cn^{-2\beta (r-1)}\sum _{j=0}^{\left\lfloor nT\right\rfloor -1}\Psi _{n}(j). \end{aligned}$$

Since the right-hand side of the last inequality is a telescopic sum, we get

$$\begin{aligned} \sum _{j=0}^{\left\lfloor nT\right\rfloor -1}\left| \left\langle \partial _{\frac{j}{n}},\widetilde{\varepsilon }_{\frac{j}{n}} \right\rangle _{{\mathfrak H}}\right| ^r \le Cn^{-2\beta (r-1)}\left( \frac{\left\lfloor nT\right\rfloor }{n}\right) ^{2\beta }. \end{aligned}$$

Relation (5.6) follows from the previous inequality. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harnett, D., Jaramillo, A. & Nualart, D. Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes. J Theor Probab 32, 1105–1144 (2019). https://doi.org/10.1007/s10959-018-0833-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0833-1

Keywords

Mathematics Subject Classification (2010)

Navigation