Abraham U, Granada AE, Westermark PO et al (2010) Coupling governs entrainment range of circadian clocks. Mol Syst Biol 6:438. doi:10.1038/msb.2010.92
PubMed
PubMed Central
Article
Google Scholar
Aguilar-Arnal L, Katada S, Orozco-Solis R, Sassone-Corsi P (2015) NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat Struct Mol Biol 22:312–318. doi:10.1038/nsmb.2990
CAS
PubMed
PubMed Central
Article
Google Scholar
Aschoff J, Tokura H (1986) Circadian activity rhythms in squirrel monkeys: entrainment by temperature cycles. J Biol Rhythms 1:91–99
CAS
PubMed
Article
Google Scholar
Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137. doi:10.1016/j.cmet.2011.01.006
CAS
PubMed
Article
Google Scholar
Asher G, Gatfield D, Stratmann M et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328. doi:10.1016/j.cell.2008.06.050
CAS
PubMed
Article
Google Scholar
Ashley NT, Ubuka T, Schwabl I et al (2014) Revealing a circadian clock in captive arctic-breeding songbirds, lapland longspurs (Calcarius lapponicus), under constant illumination. J Biol Rhythms 29:456–469. doi:10.1177/0748730414552323
CAS
PubMed
Article
Google Scholar
Avivi A, Oster H, Joel A et al (2002) Circadian genes in a blind subterranean mammal II: conservation and uniqueness of the three Period homologs in the blind subterranean mole rat, Spalax ehrenbergi superspecies. Proc Natl Acad Sci USA 99:11718–11723. doi:10.1073/pnas.182423299
CAS
PubMed
PubMed Central
Article
Google Scholar
Avivi A, Oster H, Joel A et al (2004) Circadian genes in a blind subterranean mammal III: molecular cloning and circadian regulation of Cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi superspecies. J Biol Rhythms 19:22–34. doi:10.1177/0748730403260622
CAS
PubMed
Article
Google Scholar
Bailoo JD, Bohlen MO, Wahlsten D (2010) The precision of video and photocell tracking systems and the elimination of tracking errors with infrared backlighting. J Neurosci Methods 188:45–52. doi:10.1016/j.jneumeth.2010.01.035
PubMed
PubMed Central
Article
Google Scholar
Barrett CJ, Navakatikyan MA, Malpas SC (2001) Long-term control of renal blood flow: what is the role of the renal nerves? Am J Physiol Regul Integr Comp Physiol 280:R1534–R1545
CAS
PubMed
Google Scholar
Beale A, Guibal C, Tamai TK et al (2013) Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nat Commun 4:2769. doi:10.1038/ncomms3769
PubMed
Article
CAS
Google Scholar
Bellingham J, Foster RG (2002) Opsins and mammalian photoentrainment. Cell Tissue Res 309:57–71. doi:10.1007/s00441-002-0573-4
CAS
PubMed
Article
Google Scholar
Berge J, Renaud PE, Darnis G et al (2015) In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr 139:258–271. doi:10.1016/j.pocean.2015.08.005
Article
Google Scholar
Berman A, Meltzer A (1978) Metabolic rate: its circadian rhythmicity in the female domestic fowl. J Physiol 282:419–427. doi:10.1113/jphysiol.1978.sp012472
CAS
PubMed
PubMed Central
Article
Google Scholar
Berman-Frank I, Lundgren P, Chen YB et al (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537. doi:10.1126/science.1064082
CAS
PubMed
Article
Google Scholar
Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–320. doi:10.1016/S0166-2236(03)00130-9
CAS
PubMed
Article
Google Scholar
Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073. doi:10.1126/science.1067262
CAS
PubMed
Article
Google Scholar
Bertolucci C, Foà A (2004) Extraocular photoreception and circadian entrainment in nonmammalian vertebrates. Chronobiol Int 21:501–519
PubMed
Article
Google Scholar
Blume J, Günzler E, Bünning E (1962) Zur Aktivitatsperiodik Bei Hohlentieren. Naturwissenschaften 49:525
Article
Google Scholar
Bovet J, Oertli EF (1974) Free-running circadian activity rhythms in free-living beaver (Castor canadensis). J Comp Physiol 92:1–10. doi:10.1007/BF00696522
Article
Google Scholar
Bradic M, Beerli P, Garcia-de Leon FJ et al (2012) Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol Biol 12:9. doi:10.1186/1471-2148-12-9
PubMed
PubMed Central
Article
Google Scholar
Brown FA (1961) Diurnal rhythm in cave crayfish. Nature 191:929–930. doi:10.1038/191929b0
Article
Google Scholar
Brown SA, Zumbrunn G, Fleury-Olela F et al (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583
CAS
PubMed
Article
Google Scholar
Brown SA, Kowalska E, Dallmann R (2012) (Re)inventing the circadian feedback loop. Dev Cell 22:477–487. doi:10.1016/j.devcel.2012.02.007
CAS
PubMed
Article
Google Scholar
Buhr ED, Yoo S-H, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–385. doi:10.1126/science.1195262
CAS
PubMed
PubMed Central
Article
Google Scholar
Busino L, Bassermann F, Maiolica A et al (2007) SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of Cryptochrome proteins. Science 316:900–904. doi:10.1126/science.1141194
CAS
PubMed
Article
Google Scholar
Carr A-JF, Whitmore D (2005) Imaging of single light-responsive clock cells reveals fluctuating free-running periods. Nat Cell Biol 7:319–321. doi:10.1038/ncb1232
CAS
PubMed
Article
Google Scholar
Cavallari N, Frigato E, Vallone D et al (2011) A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol 9:e1001142. doi:10.1371/journal.pbio.1001142
CAS
PubMed
PubMed Central
Article
Google Scholar
Colli L, Paglianti A, Berti R, Gandolfi G (2009) Molecular phylogeny of the blind cavefish Phreatichthys andruzzii and Garra barreimiae within the family Cyprinidae. Environ Biol Fish 84:95–107
Article
Google Scholar
Cooke SJ, Hinch SG, Wikelski M et al (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol (Amst) 19:334–343. doi:10.1016/j.tree.2004.04.003
Article
Google Scholar
Cuvelier D, Legendre P, Laes A et al (2014) Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field—a multidisciplinary deep-sea observatory approach. PLoS One 9:e96924. doi:10.1371/journal.pone.0096924.s004
PubMed
PubMed Central
Article
CAS
Google Scholar
David-Gray ZK, Janssen JW, DeGrip WJ et al (1998) Light detection in a “blind” mammal. Nat Neurosci 1:655–656. doi:10.1038/3656
CAS
PubMed
Article
Google Scholar
David-Gray ZK, Cooper HM, Janssen JW et al (1999) Spectral tuning of a circadian photopigment in a subterranean “blind” mammal (Spalax ehrenbergi). FEBS Lett 461:343–347
CAS
PubMed
Article
Google Scholar
Davies WIL, Zheng L, Hughes S et al (2011) Functional diversity of melanopsins and their global expression in the teleost retina. Cell Mol Life Sci 68:4115–4132. doi:10.1007/s00018-011-0785-4
CAS
PubMed
Article
Google Scholar
Davies WIL, Tay B-H, Zheng L et al (2012) Evolution and functional characterisation of melanopsins in a deep-sea chimaera (elephant shark, Callorhinchus milii). PLoS One 7:e51276. doi:10.1371/journal.pone.0051276
CAS
PubMed
PubMed Central
Article
Google Scholar
Davies WIL, Tamai TK, Zheng L et al (2015) An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Res 25:1666–1679. doi:10.1101/gr.189886.115
CAS
PubMed
PubMed Central
Article
Google Scholar
Debruyne JP, Noton E, Lambert CM et al (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–477. doi:10.1016/j.neuron.2006.03.041
CAS
PubMed
Article
Google Scholar
Debruyne JP, Weaver DR, Reppert SM (2007a) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10:543–545. doi:10.1038/nn1884
CAS
PubMed
PubMed Central
Article
Google Scholar
Debruyne JP, Weaver DR, Reppert SM (2007b) Peripheral circadian oscillators require CLOCK. Curr Biol 17:R538–R539. doi:10.1016/j.cub.2007.05.067
CAS
PubMed
Article
Google Scholar
Decoursey PJ (1986) Light-sampling behavior in photoentrainment of a rodent circadian rhythm. J Comp Physiol 159:161–169. doi:10.1007/BF00612299
CAS
Article
Google Scholar
Decoursey PJ, Menon SA (1991) Circadian photo-entrainment in a noctural rodent: quantitative measurement of light-sampling activity. Anim Behav 41:781–785. doi:10.1016/S0003-3472(05)80344-6
Article
Google Scholar
DeCoursey PJ, Walker JK, Smith SA (2000) A circadian pacemaker in free-living chipmunks: essential for survival? J Comp Physiol A 186:169–180
CAS
PubMed
Article
Google Scholar
Delaunay F, Laudet V (2002) Circadian clock and microarrays: mammalian genome gets rhythm. Trends Genet 18:595–597. doi:10.1016/S0168-9525(02)02794-4
CAS
PubMed
Article
Google Scholar
Desland FA, Afzal A, Warraich Z, Mocco J (2014) Manual versus automated rodent behavioral assessment: comparing efficacy and ease of Bederson and Garcia Neurological Deficit Scores to an open field video-tracking system. J Cent Nerv Syst Dis 6:7–14. doi:10.4137/JCNSD.S13194
PubMed
PubMed Central
Google Scholar
Dodd AN, Salathia N, Hall A et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633. doi:10.1126/science.1115581
CAS
PubMed
Article
Google Scholar
Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508. doi:10.1016/j.cell.2006.03.033
CAS
PubMed
Article
Google Scholar
Drijfhout WJ, Van Der Linde AG, Kooi SE et al (1996) Norepinephrine release in the Rat Pineal gland: the input from the biological clock measured by in vivo microdialysis. J Neurochem 66:748–755. doi:10.1046/j.1471-4159.1996.66020748.x
CAS
PubMed
Article
Google Scholar
Duboué ER, Borowsky RL (2012) Altered rest-activity patterns evolve via circadian independent mechanisms in cave adapted balitorid loaches. PLoS One 7:e30868. doi:10.1371/journal.pone.0030868
PubMed
PubMed Central
Article
CAS
Google Scholar
Earnest DJ, Cassone VM (2005) Cell culture models for oscillator and pacemaker function: recipes for dishes with circadian clocks? Methods Enzymol 393:558–578. doi:10.1016/s0076-6879(05)93029-2
CAS
PubMed
Article
Google Scholar
Eckel-Mahan K, Sassone-Corsi P (2013) Metabolism and the circadian clock converge. Physiol Rev 93:107–135. doi:10.1152/physrev.00016.2012
CAS
PubMed
PubMed Central
Article
Google Scholar
Eckel-Mahan KL, Patel VR, Mohney RP et al (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA 109:5541–5546. doi:10.1073/pnas.1118726109
CAS
PubMed
PubMed Central
Article
Google Scholar
Edgar RS, Green EW, Zhao Y et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–464. doi:10.1038/nature11088
CAS
PubMed
PubMed Central
Google Scholar
Eelderink-Chen Z, Olmedo M, Bosman J, Merrow M (2015) Using circadian entrainment to find cryptic clocks. Methods Enzymol 551:73–93. doi:10.1016/bs.mie.2014.10.028
CAS
PubMed
Article
Google Scholar
Ellis T, James JD, Sundh H et al (2007) Non-invasive measurement of cortisol and melatonin in tanks stocked with seawater Atlantic salmon. Aquaculture 272:698–706. doi:10.1016/J.Aquaculture.07.219
CAS
Article
Google Scholar
Erckens W, Martin W (1982) Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator. II. Features of time-controlled behavior of a cave population and their comparison to an Epigean ancestral form. Z Naturforsch C 37:1266–1273
Google Scholar
Espinasa L, Espinasa M (2016) Hydrogeology of Caves in the Sierra de El Abra Region. In: Keene AC, Yoshizawa M, McGaugh SE (eds) Biology and evolution of the Mexican Cavefish. Academic Press, pp 41–58
Fan Y, Hida A, Anderson DA et al (2007) Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Curr Biol 17:1091–1100. doi:10.1016/j.cub.2007.05.048
CAS
PubMed
PubMed Central
Article
Google Scholar
Farnell YF, Shende VR, Neuendorff N et al (2011) Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties. Eur J Neurosci 33:1533–1540. doi:10.1111/j.1460-9568.2011.07629.x
PubMed
Article
Google Scholar
Feldmann D, Flandrois C, Jardel A et al (1989) Circadian variations and reference intervals for some enzymes in urine of healthy children. Clin Chem 35:864–867
CAS
PubMed
Google Scholar
Friedrich M (2013) Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol 53:50–67. doi:10.1093/icb/ict058
CAS
PubMed
Article
Google Scholar
Friedrich M, Chen R, Daines B et al (2011) Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave. J Exp Biol 214:3532–3541. doi:10.1242/jeb.060368
CAS
PubMed
Article
Google Scholar
Gallo ND, Cameron J, Hardy K et al (2015) Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: influence of productivity and depth on epibenthic and scavenging communities. Deep Sea Res Part I 99:119–133. doi:10.1016/j.dsr.2014.12.012
Article
Google Scholar
Gaspar L, Brown SA (2015) Measuring circadian clock function in human cells. Methods Enzymol 552:231–256. doi:10.1016/bs.mie.2014.10.023
CAS
PubMed
Article
Google Scholar
Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Rowman & Littlefield, Lanham
Google Scholar
Glaser FT, Stanewsky R (2005) Temperature synchronization of the Drosophila circadian clock. Curr Biol 15:1352–1363. doi:10.1016/j.cub.2005.06.056
CAS
PubMed
Article
Google Scholar
Gnaiger E (1983) Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors: aquatic and physiological applications. Springer, Berlin Heidelberg, Berlin, pp 337–345
Chapter
Google Scholar
Goricki S, Trontelj P (2006) Structure and evolution of the mitochondrial control region and flanking sequences in the European cave salamander Proteus anguinus. Gene 378:31–41. doi:10.1016/j.gene.2006.04.016
CAS
PubMed
Article
Google Scholar
Green RM, Tingay S, Wang Z-Y, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584. doi:10.1104/pp.004374
CAS
PubMed
PubMed Central
Article
Google Scholar
Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742. doi:10.1016/j.cell.2008.08.022
CAS
PubMed
PubMed Central
Article
Google Scholar
Gross JB (2012) The complex origin of Astyanax cavefish. BMC Evol Biol 12:105. doi:10.1186/1471-2148-12-105
PubMed
PubMed Central
Article
Google Scholar
Hankins MW, Peirson SN, Foster RG (2008) Melanopsin: an exciting photopigment. Trends Neurosci 31:27–36. doi:10.1016/j.tins.2007.11.002
CAS
PubMed
Article
Google Scholar
Hannibal J, Hindersson P, Nevo E, Fahrenkrug J (2002) The circadian photopigment melanopsin is expressed in the blind subterranean mole rat. Spalax. Neuroreport 13:1411
CAS
PubMed
Article
Google Scholar
Hardin PE (2005) The circadian timekeeping system of Drosophila. Curr Biol 15:R714–R722. doi:10.1016/j.cub.2005.08.019
CAS
PubMed
Article
Google Scholar
Hart L, Bennett NC, Malpaux B et al (2004) The chronobiology of the Natal mole-rat, Cryptomys hottentotus natalensis. Physiol Behav 82:563–569. doi:10.1016/j.physbeh.2004.05.008
CAS
PubMed
Article
Google Scholar
Hattar S, Lucas R, Mrosovsky N et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81. doi:10.1038/nature01761
CAS
PubMed
PubMed Central
Article
Google Scholar
Hau M, Romero LM, Brawn JD, Van’t Hof TJ (2002) Effect of polar day on plasma profiles of melatonin, testosterone, and estradiol in high-Arctic Lapland Longspurs. Gen Comp Endocrinol 126:101–112. doi:10.1006/gcen.2002.7776
CAS
PubMed
Article
Google Scholar
Hervant F, Mathieu J (2000) Metabolism and circadian rhythms of the European blind cave salamander Proteus anguinus and a facultative cave dweller, the Pyrenean newt (Euproctus asper). Can J Zool 78:1427–1432
Article
Google Scholar
Hirayama J, Sahar S, Grimaldi B et al (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090. doi:10.1038/nature06394
CAS
PubMed
Article
Google Scholar
Hoffmann K (1969) Zum Einfluss der Zeitgeberstärke auf die Phasenlage der synchronisierten circadianen Periodik. Zeitschrift für vergleichende Physiologie 62:93–110
Article
Google Scholar
Huang ZJ, Curtin KD, Rosbash M (1995) PER protein interactions and temperature compensation of a circadian clock in Drosophila. Science 267:1169–1172
CAS
PubMed
Article
Google Scholar
Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436. doi:10.1177/074873098129000255
CAS
PubMed
Article
Google Scholar
Jegla TC, Poulson TL (1968) Evidence of circadian rhythms in a cave crayfish. J Exp Zool 168:273–282. doi:10.1002/jez.1401680213
Article
Google Scholar
Johnson CH (2010) Circadian clocks and cell division: what’s the pacemaker? Cell Cycle 9:3864–3873
CAS
PubMed
PubMed Central
Article
Google Scholar
Kaasik K, Kivimäe S, Allen JJ et al (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17:291–302. doi:10.1016/j.cmet.2012.12.017
CAS
PubMed
PubMed Central
Article
Google Scholar
Kawai Y, Wada A (2007) Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: a review. J Oceanogr 63:721–744. doi:10.1007/s10872-007-0063-0
Article
Google Scholar
Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. In: Community TCER (ed) WormBook
Kippert F, Saunders DS, Blaxter ML (2002) Caenorhabditis elegans has a circadian clock. Curr Biol 12:R47–R49
CAS
PubMed
Article
Google Scholar
Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythms 13:471–478
CAS
PubMed
Article
Google Scholar
Kloss B, Price JL, Saez L et al (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94:97–107
CAS
PubMed
Article
Google Scholar
Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK (2000) Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol Int 17:757–765
CAS
PubMed
Article
Google Scholar
Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2116
CAS
PubMed
PubMed Central
Article
Google Scholar
Krauchi K, Wirz-Justice A (1994) Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Physiol 267:R819–R829
CAS
PubMed
Google Scholar
Lahiri K, Vallone D, Gondi SB et al (2005) Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol 3:e351. doi:10.1371/journal.pbio.0030351
PubMed
PubMed Central
Article
CAS
Google Scholar
Lamb TD (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 36:52–119. doi:10.1016/j.preteyeres.2013.06.001
CAS
PubMed
Article
Google Scholar
Lamprecht G, Weber F (1978) Activity patterns of cave-dwelling beetles. Int J Speleol 10:351–379
Article
Google Scholar
Land MF, Nilsson DE (2012) Animal eyes, 2nd edn. Oxford University Press, Oxford
Book
Google Scholar
Lee M-LT, Kuo FC, Whitmore GA, Sklar J (2000) Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci USA 97:9834–9839
CAS
PubMed
PubMed Central
Article
Google Scholar
Lee J, Lee Y, Lee MJ et al (2008) Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol 28:6056–6065. doi:10.1128/MCB.00583-08
CAS
PubMed
PubMed Central
Article
Google Scholar
Lincoln GA, Clarke IJ, Hut RA, Hazlerigg DG (2006) Characterizing a mammalian circannual pacemaker. Science 314:1941–1944. doi:10.1126/science.1132009
CAS
PubMed
Article
Google Scholar
Liu AC, Welsh DK, Ko CH et al (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129:605–616. doi:10.1016/j.cell.2007.02.047
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu AC, Tran HG, Zhang EE et al (2008) Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4:e1000023. doi:10.1371/journal.pgen.1000023
PubMed
PubMed Central
Article
CAS
Google Scholar
Lowrey PL, Shimomura K, Antoch MP et al (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492
CAS
PubMed
PubMed Central
Article
Google Scholar
Lu W, Meng Q-J, Tyler NJC et al (2010) A circadian clock is not required in an arctic mammal. Curr Biol 20:533–537. doi:10.1016/j.cub.2010.01.042
CAS
PubMed
Article
Google Scholar
Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4:621–626. doi:10.1038/88443
CAS
PubMed
Article
Google Scholar
Martino TA, Oudit GY, Herzenberg AM et al (2008) Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol 294:R1675–R1683. doi:10.1152/ajpregu.00829.2007
CAS
PubMed
Article
Google Scholar
Masri S, Cervantes M, Sassone-Corsi P (2013) The circadian clock and cell cycle: interconnected biological circuits. Curr Opin Cell Biol 25:730–734. doi:10.1016/j.ceb.2013.07.013
CAS
PubMed
PubMed Central
Article
Google Scholar
Maynou F, Cartes JE (1998) Daily ration estimates and comparative study of food consumption in nine species of deep-water decapod crustaceans of the NW Mediterranean. Mar Ecol Prog Ser 171:221–231
Article
Google Scholar
McGaugh SE, Gross JB, Aken B et al (2014) The cavefish genome reveals candidate genes for eye loss. Nat Commun 5:5307. doi:10.1038/ncomms6307
CAS
PubMed
PubMed Central
Article
Google Scholar
Mead M, Gilhodes JC (1974) Organisation temporelle de l’activité locomotrice chez un animal cavernicole Blaniulus lichtensteini Bröl. (Diplopoda). J Comp Physiol 90:47–52. doi:10.1007/BF00698366
Article
Google Scholar
Mehra A, Baker CL, Loros JJ, Dunlap JC (2009) Post-translational modifications in circadian rhythms. Trends Biochem Sci 34:483–490. doi:10.1016/j.tibs.2009.06.006
CAS
PubMed
PubMed Central
Article
Google Scholar
Meng Q-J, Logunova L, Maywood ES et al (2008) Setting clock speed in mammals: the CK1 epsilon
tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88. doi:10.1016/j.neuron.2008.01.019
CAS
PubMed
PubMed Central
Article
Google Scholar
Migliori ML, Simonetta SH, Romanowski A, Golombek DA (2011) Circadian rhythms in metabolic variables in Caenorhabditis elegans. Physiol Behav 103:315–320. doi:10.1016/j.physbeh.2011.01.026
CAS
PubMed
Article
Google Scholar
Miller BH, McDearmon EL, Panda S et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA 104:3342–3347. doi:10.1073/pnas.0611724104
CAS
PubMed
PubMed Central
Article
Google Scholar
Minors DS, Folkard S, Waterhouse JM (1996) The shape of the endogenous circadian rhythm of rectal temperature in humans. Chronobiol Int 13:261–271. doi:10.3109/07420529609020906
CAS
PubMed
Article
Google Scholar
Modica L, Cartes JE, Carrassón M (2014) Food consumption of five deep-sea fishes in the Balearic Basin (western Mediterranean Sea): are there daily feeding rhythms in fishes living below 1000 m? J Fish Biol 85:800–820. doi:10.1111/jfb.12459
CAS
PubMed
Article
Google Scholar
Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206
CAS
PubMed
Article
Google Scholar
Moore HA, Whitmore D (2014) Circadian rhythmicity and light sensitivity of the zebrafish brain. PLoS One 9:e86176. doi:10.1371/journal.pone.0086176
PubMed
PubMed Central
Article
CAS
Google Scholar
Moran D, Softley R, Warrant EJ (2014) Eyeless mexican cavefish save energy by eliminating the circadian rhythm in metabolism. PLoS One 9:e107877. doi:10.1371/journal.pone.0107877
PubMed
PubMed Central
Article
CAS
Google Scholar
Nagoshi E, Brown SA, Dibner C et al (2005) Circadian gene expression in cultured cells. Methods Enzymol 393:543–557. doi:10.1016/S0076-6879(05)93028-0
CAS
PubMed
Article
Google Scholar
Nakahata Y, Kaluzova M, Grimaldi B et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340. doi:10.1016/j.cell.2008.07.002
CAS
PubMed
PubMed Central
Article
Google Scholar
Nakahata Y, Sahar S, Astarita G et al (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657. doi:10.1126/science.1170803
CAS
PubMed
Article
Google Scholar
Nevo E (1998) Evolution of a visual system of life without light: optimization via tinkering in blind mole rats. In: Weibel ER, Taylor CR, Bolis L (eds) Principles of animal design. Cambridge University Press, Cambridge, pp 288–298
Google Scholar
Nilsson DE (2013) Eye evolution and its functional basis. Vis Neurosci 30:5–20. doi:10.1017/S0952523813000035
PubMed
PubMed Central
Article
Google Scholar
O-Martínez ADL, Verde MA, Valadez RL et al (2004) About the existence of circadian activity in cave crayfish. Biol Rhythm Res 35:195–204. doi:10.1080/09291010412331335742
Article
Google Scholar
O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503. doi:10.1038/nature09702
PubMed
PubMed Central
Article
CAS
Google Scholar
O’Neill JS, van Ooijen G, Dixon LE et al (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558. doi:10.1038/nature09654
PubMed
PubMed Central
Article
CAS
Google Scholar
Oosthuizen MK, Cooper HM, Bennett NC (2003) Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae). J Biol Rhythms 18:481–490. doi:10.1177/0748730403259109
PubMed
Article
Google Scholar
Ornelas-García CP, Domínguez-Domínguez O, Doadrio I (2008) Evolutionary history of the fish genus Astyanax Baird & Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evol Biol 8:340. doi:10.1186/1471-2148-8-340
PubMed
PubMed Central
Article
CAS
Google Scholar
Ouyang Y, Andersson CR, Kondo T et al (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664
CAS
PubMed
PubMed Central
Article
Google Scholar
Panda S, Antoch MP, Miller BH et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320
CAS
PubMed
Article
Google Scholar
Paranjpe DA, Anitha D, Kumar S et al (2003) Entrainment of eclosion rhythm in Drosophila melanogaster populations reared for more than 700 generations in constant light environment. Chronobiol Int 20:977–987
PubMed
Article
Google Scholar
Pati AK (2001) Temporal organization in locomotor activity of the hypogean loach, Nemacheilus evezardi, and its epigean ancestor. Environ Biol Fish 62:119–129
Article
Google Scholar
Payne NL, Taylor MD, Watanabe YY, Semmens JM (2014) From physiology to physics: are we recognizing the flexibility of biologging tools? J Exp Biol 217:317–322. doi:10.1242/jeb.093922
PubMed
Article
Google Scholar
Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16
CAS
PubMed
Article
Google Scholar
Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16–54. doi:10.1146/annurev.ph.55.030193.000313
CAS
PubMed
Article
Google Scholar
Pittendrigh CS, Minis DH (1972) Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc Natl Acad Sci USA 69:1537–1539
CAS
PubMed
PubMed Central
Article
Google Scholar
Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635
CAS
PubMed
Article
Google Scholar
Postlethwait J, Amores A, Cresko W et al (2004) Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481–490. doi:10.1016/j.tig.2004.08.001
CAS
PubMed
Article
Google Scholar
Poulson TL, White WB (1969) The cave environment. Science 165:971–981. doi:10.1126/science.165.3897.971
CAS
PubMed
Article
Google Scholar
Price JL, Blau J, Rothenfluh A et al (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95
CAS
PubMed
Article
Google Scholar
Provencio I, Jiang G, De Grip WJ et al (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95:340–345
CAS
PubMed
PubMed Central
Article
Google Scholar
Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227
CAS
PubMed
Article
Google Scholar
Ralph M, Foster R, Davis F, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978. doi:10.1126/science.2305266
CAS
PubMed
Article
Google Scholar
Ramsey KM, Yoshino J, Brace CS et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654. doi:10.1126/science.1171641
CAS
PubMed
PubMed Central
Article
Google Scholar
Reddy AB, Rey G (2014) Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu Rev Biochem 83:165–189. doi:10.1146/annurev-biochem-060713-035623
CAS
PubMed
PubMed Central
Article
Google Scholar
Refinetti R (2003) Metabolic heat production, heat loss and the circadian rhythm of body temperature in the rat. Exp Physiol 88:423–429. doi:10.1113/eph8802521
PubMed
Article
Google Scholar
Refinetti R (2005) Circadian physiology, 2nd edn. CRC/Taylor & Francis, Boca Raton
Refinetti R (2010) Entrainment of circadian rhythm by ambient temperature cycles in mice. J Biol Rhythms 25:247–256. doi:10.1177/0748730410372074
PubMed
Article
Google Scholar
Refinetti R (2015) Comparison of light, food, and temperature as environmental synchronizers of the circadian rhythm of activity in mice. J Physiol Sci 65:359–366. doi:10.1007/s12576-015-0374-7
CAS
PubMed
Article
Google Scholar
Reierth E, Van’t Hof TJ, Stokkan KA (1999) Seasonal and daily variations in plasma melatonin in the high-arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). J Biol Rhythms 14:314–319
CAS
PubMed
Article
Google Scholar
Renn SC, Park JH, Rosbash M et al (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802
CAS
PubMed
Article
Google Scholar
Rensing L, Ruoff P (2002) Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 19:807–864
CAS
PubMed
Article
Google Scholar
Riccio AP, Goldman BD (2000) Circadian rhythms of locomotor activity in naked mole-rats (Heterocephalus glaber). Physiol Behav 71:1–13. doi:10.1016/S0031-9384(00)00281-X
CAS
PubMed
Article
Google Scholar
Ropert-Coudert Y, Wilson RP (2005) Trends and perspectives in animal-attached remote sensing. Front Ecol Environ 3:437–444. doi:10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2
Saint Paul von U, Aschoff J (1978) Longevity among blowflies Phormia terraenovae R.D. kept in non-24-hour light-dark cycles. J Comp Physiol 127:191–195. doi:10.1007/BF01350109
Article
Google Scholar
Sancar A, Lindsey-Boltz LA, Gaddameedhi S et al (2015) Circadian clock, cancer, and chemotherapy. Biochemistry 54:110–123. doi:10.1021/bi5007354
CAS
PubMed
Article
Google Scholar
Saunders DS (2002) Circadian rhythms: photoreceptor and clock location. In: Saunders DS, Steel CGH, Vafopoulou X, Lewis RD (eds) Insect Clocks. Elsevier, Amsterdam, p 576
Google Scholar
Schöttner K, Oosthuizen MK, Broekman M, Bennett NC (2006) Circadian rhythms of locomotor activity in the Lesotho mole-rat, Cryptomys hottentotus subspecies from Sani Pass, South Africa. Physiol Behav 89:205–212. doi:10.1016/j.physbeh.2006.06.014
PubMed
Article
CAS
Google Scholar
Sehadova H, Glaser FT, Gentile C et al (2009) Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 64:251–266. doi:10.1016/j.neuron.2009.08.026
CAS
PubMed
Article
Google Scholar
Sharma VK (2003) Adaptive significance of circadian clocks. Chronobiol Int 20:901–919
PubMed
Article
Google Scholar
Shirakawa T, Mitome M, Oguchi H (2004) Circadian rhythms of S-IgA and cortisol in whole saliva—compensatory mechanism of oral immune system for nocturnal fall of saliva secretion. Pediatr Dent J 14:115–120. doi:10.1016/S0917-2394(04)70017-8
Article
Google Scholar
Silverin B, Gwinner E, Van’t Hof TJ et al (2009) Persistent diel melatonin rhythmicity during the Arctic summer in free-living willow warblers. Horm Behav 56:163–168. doi:10.1016/j.yhbeh.2009.04.002
CAS
PubMed
Article
Google Scholar
Simonetta SH, Migliori ML, Romanowski A, Golombek DA (2009) Timing of locomotor activity circadian rhythms in Caenorhabditis elegans. PLoS One 4:e7571. doi:10.1371/journal.pone.0007571
PubMed
PubMed Central
Article
CAS
Google Scholar
Sket B (1997) Distribution of Proteus (Amphibia: Urodela: Proteidae) and its possible explanation. J Biogeogr 24:263–280
Article
Google Scholar
Smadja Storz S, Tovin A, Mracek P et al (2013) Casein kinase 1δ activity: a key element in the zebrafish circadian timing system. PLoS One 8:e54189. doi:10.1371/journal.pone.0054189
CAS
PubMed
PubMed Central
Article
Google Scholar
Solberg LC, Olson SL, Turek FW, Redei E (2001) Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am J Physiol Regul Integr Comp Physiol 281:R786–R794
CAS
PubMed
Google Scholar
Spoelstra K, Wikelski M, Daan S et al (2016) Natural selection against a circadian clock gene mutation in mice. Proc Natl Acad Sci USA 113:686–691. doi:10.1073/pnas.1516442113
CAS
PubMed
Article
Google Scholar
Stanewsky R, Kaneko M, Emery P et al (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692
CAS
PubMed
Article
Google Scholar
Steffensen JF (1989) Some errors in respirometry of aquatic breathers: how to avoid and correct for them. Fish Physiol Biochem 6:49–59
CAS
PubMed
Article
Google Scholar
Steiger SS, Valcu M, Spoelstra K et al (2013) When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proc Biol Sci 280:20131016. doi:10.1098/rspb.2013.1016
PubMed
PubMed Central
Article
Google Scholar
Stiller KT, Vanselow KH, Moran D et al (2015) The effect of carbon dioxide on growth and metabolism in juvenile turbot Scophthalmus maximus L. Aquaculture 444:143–150. doi:10.1016/j.aquaculture.2015.04.001
CAS
Article
Google Scholar
Stokkan K-A, van Oort BEH, Tyler NJC, Loudon ASI (2007) Adaptations for life in the Arctic: evidence that melatonin rhythms in reindeer are not driven by a circadian oscillator but remain acutely sensitive to environmental photoperiod. J Pineal Res 43:289–293. doi:10.1111/j.1600-079X.2007.00476.x
CAS
PubMed
Article
Google Scholar
Straume M (2004) DNA microarray time series analysis: automated statistical assessment of circadian rhythms in gene expression patterning. Methods Enzymol 383:149–166. doi:10.1016/S0076-6879(04)83007-6
CAS
PubMed
Article
Google Scholar
Strecker U, Faúndez VH, Wilkens H (2004) Phylogeography of surface and cave Astyanax (Teleostei) from Central and North America based on cytochrome b sequence data. Mol Phylogenet Evol 33:469–481. doi:10.1016/j.ympev.2004.07.001
CAS
PubMed
Article
Google Scholar
Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography: an introduction, 6th edn. Academic Press, London
Google Scholar
Tamai TK, Whitmore D (2015) Circadian clock control of the cell cycle and links to cancer. In: Colwell CS (ed) Circadian medicine. Wiley, Hoboken, pp 169–181
Google Scholar
Tamai KT, Carr AJ, Whitmore D (2005) Zebrafish circadian clocks: cells that see light. Biochem Soc Trans 33:962–966. doi:10.1042/BST20050962
CAS
PubMed
Article
Google Scholar
Tester M, Morris C (1987) The penetration of light through soil. Plant Cell Environ 10:281–286. doi:10.1111/j.1365-3040.1987.tb01607.x
Article
Google Scholar
Thomas C, Marcaletti S, Feige JN (2011) Assessment of spontaneous locomotor and running activity in mice. Curr Protoc Mouse Biol 1:185–198. doi:10.1002/9780470942390.mo100170
PubMed
Google Scholar
Tobler I, Herrmann M, Cooper HM et al (1998) Rest-activity rhythm of the blind mole rat Spalax ehrenbergi under different lighting conditions. Behav Brain Res 96:173–183
CAS
PubMed
Article
Google Scholar
Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254. doi:10.1126/science.1102540
CAS
PubMed
Article
Google Scholar
Tomotani BM, Flôres DEFL, Tachinardi P et al (2012) Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco. PLoS One 7:e37918. doi:10.1371/journal.pone.0037918
CAS
PubMed
PubMed Central
Article
Google Scholar
Trajano E, Menna-Barreto L (2000) Locomotor activity rhythms in cave catfishes, Genus Taunayia, from Eastern Brazil (Teleostei: Siluriformes: Heptapterinae). Biol Rhythm Res 31:469–480. doi:10.1076/0929-1016(200010)31:4;1-2;FT469
Article
Google Scholar
Trajano E, Duarte L, Menna-Barreto L (2005) Locomotor activity rhythms in cave fishes from Chapada Diamantina, northeastern Brazil (Teleostei: Siluriformes). Biol Rhythm Res 36:229–236. doi:10.1080/09291010400026272
Article
Google Scholar
Trajano E, Carvalho MR, Duarte L, Menna-Barreto L (2009) Comparative study on free-running locomotor activity circadian rhythms in Brazilian subterranean fishes with different degrees of specialization to the hypogean life (Teleostei: Siluriformes; Characiformes). Biol Rhythm Res 40:477–489. doi:10.1080/09291010902731205
Article
Google Scholar
Trajano E, Ueno JCH, Menna-Barreto L (2012) Evolution of time-control mechanisms in subterranean organisms: cave fishes under light-dark cycles (Teleostei: Siluriformes, Characiformes). Biol Rhythm Res 43:191–203. doi:10.1080/09291016.2011.560051
Article
Google Scholar
Valentinuzzi VS, Oda GA, Araujo JF, Ralph MR (2009) Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii). Chronobiol Int 26:14–27. doi:10.1080/07420520802686331
PubMed
Article
Google Scholar
van Oort BEH, Tyler NJC, Gerkema MP et al (2005) Circadian organization in reindeer. Nature 438:1095–1096. doi:10.1038/4381095a
PubMed
Article
CAS
Google Scholar
van Oort BEH, Tyler NJC, Gerkema MP et al (2007) Where clocks are redundant: weak circadian mechanisms in reindeer living under polar photic conditions. Naturwissenschaften 94:183–194. doi:10.1007/s00114-006-0174-2
CAS
PubMed
Article
Google Scholar
Vaze KM, Sharma VK (2013) On the adaptive significance of circadian clocks for their owners. Chronobiol Int 30:413–433. doi:10.3109/07420528.2012.754457
PubMed
Article
Google Scholar
Vigh B, Manzano MJ, Zádori A et al (2002) Nonvisual photoreceptors of the deep brain, pineal organs and retina. Histol Histopathol 17:555–590
CAS
PubMed
Google Scholar
Wagner HJ, Kemp K, Mattheus U, Priede IG (2007) Rhythms at the bottom of the deep sea: cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep Sea Res Part I 54:1944–1956
Article
Google Scholar
Walter W, Striberny B, Gaquerel E et al (2014) Improving the accuracy of expression data analysis in time course experiments using resampling. BMC Bioinform 15:9. doi:10.1186/s12859-014-0352-8
Article
CAS
Google Scholar
Wang H (2008a) Comparative analysis of period genes in teleost fish genomes. J Mol Evol 67:29–40. doi:10.1007/s00239-008-9121-5
CAS
PubMed
Article
Google Scholar
Wang H (2008b) Comparative analysis of teleost fish genomes reveals preservation of different ancient clock duplicates in different fishes. Mar Genomics 1:69–78. doi:10.1016/j.margen.2008.06.003
PubMed
Article
Google Scholar
Wang H (2009) Comparative genomic analysis of teleost fish bmal genes. Genetica 136:149–161. doi:10.1007/s10709-008-9328-9
CAS
PubMed
Article
Google Scholar
Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712. doi:10.1017/S1464793103006420
PubMed
Article
Google Scholar
Weger M, Weger BD, Diotel N et al (2013) Real-time in vivo monitoring of circadian E-box enhancer activity: a robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock. Dev Biol 380:259–273. doi:10.1016/j.ydbio.2013.04.035
CAS
PubMed
Article
Google Scholar
Welsh DK, Imaizumi T, Kay SA (2005) Real-time reporting of circadian-regulated gene expression by luciferase imaging in plants and mammalian cells. Methods Enzymol 393:269–288. doi:10.1016/S0076-6879(05)93011-5
CAS
PubMed
Article
Google Scholar
Westgate EJ, Cheng Y, Reilly DF et al (2008) Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation 117:2087–2095. doi:10.1161/circulationaha.107.739227
PubMed
Article
Google Scholar
Wheeler DA, Hamblen-Coyle MJ, Dushay MS, Hall JC (1993) Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both. J Biol Rhythms 8:67–94
CAS
PubMed
Article
Google Scholar
Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc Natl Acad Sci USA 95:6578–6583
CAS
PubMed
PubMed Central
Article
Google Scholar
Whitmore D, Foulkes NS, Strähle U, Sassone-Corsi P (1998) Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1:701–707. doi:10.1038/3703
CAS
PubMed
Article
Google Scholar
Whitmore D, Foulkes NS, Sassone-Corsi P (2000) Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404:87–91. doi:10.1038/35003589
CAS
PubMed
Article
Google Scholar
Williams CT, Barnes BM, Buck CL (2015) Persistence, entrainment, and function of circadian rhythms in polar vertebrates. Physiology (Bethesda) 30:86–96. doi:10.1152/physiol.00045.2014
CAS
Google Scholar
Wilsbacher LD, Yamazaki S, Herzog ED et al (2002) Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc Natl Acad Sci USA 99:489–494. doi:10.1073/pnas.012248599
CAS
PubMed
Article
Google Scholar
Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486. doi:10.1016/j.cub.2004.08.023
CAS
PubMed
Article
Google Scholar
Wurtman RJ, Axelrod J, Phillips LS (1963) Melatonin synthesis in the Pineal Gland: control by light. Science 142:1071–1073. doi:10.1126/science.142.3595.1071
CAS
PubMed
Article
Google Scholar
Xu Y, Padiath QS, Shapiro RE et al (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644. doi:10.1038/nature03453
CAS
PubMed
Article
Google Scholar
Yamaguchi S, Kobayashi M, Mitsui S et al (2001) Gene expression: view of a mouse clock gene ticking. Nature 409:684. doi:10.1038/35055628
CAS
PubMed
Article
Google Scholar
Yamaguchi S, Isejima H, Matsuo T et al (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412. doi:10.1126/science.1089287
CAS
PubMed
Article
Google Scholar
Yamazaki S, Takahashi JS (2005) Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol 393:288–301. doi:10.1016/S0076-6879(05)93012-7
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang J, Chen X, Bai J et al (2016) The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol 14:1. doi:10.1186/s12915-015-0223-4
PubMed
PubMed Central
Article
Google Scholar
Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12:970–981. doi:10.1111/j.1461-0248.2009.01343.x
PubMed
Article
Google Scholar
Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715. doi:10.1038/35088576
CAS
PubMed
Article
Google Scholar
Zimmerman WF, Pittendrigh CS, Pavlidis T (1968) Temperature compensation of the circadian oscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. J Insect Physiol 14:669–684
CAS
PubMed
Article
Google Scholar