Journal of Comparative Physiology B

, Volume 177, Issue 3, pp 269–286 | Cite as

A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets

  • Stuart M. LintonEmail author
  • Peter Greenaway


This paper reviews the nutritional ecology, the digestive physiology, and biochemistry of herbivorous land crabs and the adaptations that they possess towards a diet of plant material. Land crab species that breathe air and forage out of water can be divided into three feeding specialisations: primarily carnivorous, deposit feeders feeding on micro-organisms and organic matter in the sediment, and herbivores consuming mainly plant material and its detritus. The last forms the focus of this review. The diets of the herbivores are low in nitrogen and high in carbon, are difficult to digest since they contain cellulose and hemicellulose, and may disrupt digestion due to the presence of tannins. Herbivorous crustaceans are able to efficiently utilise plant material as their primary nutrient source and are indeed able to meet their nitrogen requirements from it. Herbivorous land crabs display a range of adaptations towards a low nitrogen intake and these are discussed in this review. They also appear to endogenously produce cellulase and hemicellulase enzymes for the digestion of cellulose and hemicellulose. Generalised and specific adaptations allow them to inhibit the potentially negative digestive effects of tannins. To digest plant material, they possess a plastic digestive strategy of high food intake, short retention time, high assimilation of cell contents, and substantial digestion of cellulose and hemicellulose.


Land crabs Herbivory Feeding Low nitrogenous diet Tannins Cellulases 


  1. Adamczewska AM, Morris S (1994) Exercise in the Christmas Island red crab Gecarcoidea natalis. II. Energetics of locomotion. J Exp Biol 188:257–274PubMedGoogle Scholar
  2. Adamczewska AM, Morris S (2000) Locomotion, respiratory physiology, and energetics of amphibious & terrestrial crabs. Physiol Biochem Zool 73:706–725PubMedCrossRefGoogle Scholar
  3. Adamczewska AM, Morris S (2001) Ecology and behavior of Gecarcoidea natalis, the Christmas Island Red Crab, during the annual breeding migration. Biol Bull 200:305–320CrossRefGoogle Scholar
  4. Alexander HGL (1979) A preliminary assessment of the role of the terrestrial decapod crustaceans in the Aldabran ecosystem. Phil Trans R Soc Lond B 286:241–246Google Scholar
  5. Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552CrossRefGoogle Scholar
  6. Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell wall. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 14. Academic Press, New York, pp 297–371Google Scholar
  7. Bayliss J (2002) The East Usambara tree-hole crab (Brachyura: Potamoidea: Potamonautidae)—a striking example of crustacean adaptation in closed canopy forest, Tanzania. Afr J Ecol 40:26–34CrossRefGoogle Scholar
  8. Beever JW, Simberloff D, King L (1979) Herbivory and predation by the mangrove tree crab Aratus pisonii. Oecologia 43:317–328CrossRefGoogle Scholar
  9. Berenbaum M (1980) Adaptive significance of midgut pH in larval lepidoptera. Am Nat 115:138–146CrossRefGoogle Scholar
  10. Bernays EA (1981) Plant tannins and insect herbivores: an appraisal. Ecol Entomol 6:353–360Google Scholar
  11. Bernays EA, Chamberlain DJ (1980) A study of tolerance of ingested tannin in Schistocerca gregaria. J Insect Physiol 26:415–420CrossRefGoogle Scholar
  12. Bernays E, Chapman RF (2000) Plant secondary compounds and grasshoppers: beyond plant defenses. J Chem Ecol 26:1773–1794CrossRefGoogle Scholar
  13. Bouillon S, Koedam N, Raman AV, Dehairs F (2002) Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia 130:441–448CrossRefGoogle Scholar
  14. Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239:317–324PubMedCrossRefGoogle Scholar
  15. Camilleri J (1989) Leaf choice by crustaceans in a mangrove forest in Queensland. Mar Biol 102:453–459CrossRefGoogle Scholar
  16. Cannicci S, Ruwa RK, Ritossa S, Vannini M (1996) Branch-fidelity in the tree crab Sesarma leptosoma (Decapoda, Grapsidae) J Zool Lond 238:795–801CrossRefGoogle Scholar
  17. Cannicci S, Fratini S, Vannini M (1999) Use of time, space and food resources in the mangrove climbing crab Selatium elongatum (Grapsidae: Sesarminae). Mar Biol 135:335–339CrossRefGoogle Scholar
  18. Canela MBF, Sazima M (2003) Florivory by the crab Armases angustipes (Grapsidae) influences hummingbird visits to Aechmea pectinata (Bromeliaceae). Biotropica 35:289–294Google Scholar
  19. Chace FA (1972) Longevity of the West Indian terrestrial hermit crab Coenobita clypeatus (Herbst, 1791). Crustaceana 22:320Google Scholar
  20. Cheng IJ, Chang PC (1999) The relationship between surface macrofanua and sediment nutrients in a mudflat of the Chuwei mangrove forest, Taiwan. Bull Mar Sci 65:603–616Google Scholar
  21. Crawford AC, Richardson NA, Mather PB (2005) A comparative study of cellulase and xylanase activity in freshwater crayfish and marine prawns. Aquacult Res 36:586–592CrossRefGoogle Scholar
  22. Cumberlidge N, Fenolio DB, Walvoord ME, Stout J (2005) Tree-climbing crabs (Potamonautidae and Sesarmidae) from phytotelmic microhabitats in rainforest canopy in Madagascar. J Crust Biol 25:302–308CrossRefGoogle Scholar
  23. Cundell AM, Brown MS, Standford R, Mitchell R (1979) Microbial degradation of Rhizophora mangle leaves immersed in the sea. Est Coast Shelf Sci 9:281–286CrossRefGoogle Scholar
  24. Dahdouh-Guebas FM, Verneirt M, Tack J, Speybroeck Dvan, Koedam N (1997) Food preferences in Neosarmatium meinerti de Man (Decapoda: Sesarminae), and its possible effects on mangrove regeneration. Hydrobiologia 347:83–89CrossRefGoogle Scholar
  25. Dahdouh-Guebas FM, Verneirt M, Tack JF, van Speybroeck D, Koedam N (1998) Propagules predators in Kenyan mangrove forests and their possible effect on the regeneration. Mar Freshwater Biol 49:345–350CrossRefGoogle Scholar
  26. Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22:1273–1284PubMedCrossRefGoogle Scholar
  27. Dehal P, Satou Y, Campbell Y, Chapman Y, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefGoogle Scholar
  28. Dikeman CL, Bauer LL, Flickinger EA, Fahey GC (2005) Effects of stage of maturity and cooking on the chemical composition of select mushroom varieties. J Agric Food Chem 53:1130–1138PubMedCrossRefGoogle Scholar
  29. Doi RH, Kosugi A (2004) Cellulosomes: plant–cell–wall–degrading enzyme complexes. Nat Rev 2:541–551CrossRefGoogle Scholar
  30. Dye AH, Lasiak TA (1987) Assimilation efficiencies of fiddler crabs and deposit-feeding gastropods from tropical mangrove sediments. Comp Biochem Physiol A 87:341–344CrossRefGoogle Scholar
  31. Ehrhardt JP, Niaussat P (1970) Ecologie et physiologie du brachyoure terrestre Gecarcinus planatus (Stimpson) (d’après les individus de l’Atoll de Clipperton). Bull Soc Zool Fr 95:41–54Google Scholar
  32. Emmerson WD, McGwynne LE (1992) Feeding and assimilation of mangrove leaves by the crab Sesarma meinterti de Man, in relation to leaf litter production in Mgazana, a warm-temperate southern African mangrove swamp. J Exp Mar Biol Ecol 157:41–53CrossRefGoogle Scholar
  33. Erickson AA, Saltis M, Bell SS, Dawes CJ (2003) Herbivore feeding preferences as measured by leaf damage and stomatal ingestion: a mangrove crab example. J Exp Mar Biol Ecol 289:123–138CrossRefGoogle Scholar
  34. Figueiredo MSRB, Kricker JA, Anderson AJ (2001) Digestive enzyme activities in the alimentary tract of redclaw crayfish, Cherax quadricarinatus (Decapoda: Parastacidae). J Crust Biol 21:334–344CrossRefGoogle Scholar
  35. Fletcher WJ, Brown IW, Fielder DR (1990) Movement of coconut crabs, Birgus latro, in a rainforest habitat in Vanuatu. Pac Sci 44:407–416Google Scholar
  36. France R (1998) Estimation of the assimilation of mangrove detritus by fiddler crabs in Laguna Joyuda, Puerto Rico, using dual stable isotopes. J Trop Ecol 14:413–425CrossRefGoogle Scholar
  37. Garcia-Franco JG, Rico-Gray V, Zayas O (1991) Seed and seedling predation of Bromelia pinguin by the red land crab Gecarcinus lateralis Frem. in Veracruz, Mexico. Biotropica 23:96–97CrossRefGoogle Scholar
  38. Garth JS (1965) The brachyuran decapod crustaceans of Clipperton Island. Proc Calif Acad Sci Ser 4(33):1–46Google Scholar
  39. Giddins RL, Lucas JS, Neilson MJ, Richards GN (1986) Feeding ecology of the mangrove crab Neosarmatium smithi (Crustacea: Decapoda: Sesarminidae). Mar Ecol Prog Ser 33:147–155Google Scholar
  40. Giddins RL, Richards GN (1986) Effects of tannins on the palatability of mangrove leaves to the tropical sesarminid crab Neosarmatium smithi. Mar Ecol Prog Ser 34:185–186Google Scholar
  41. Green PT (1997) Red crabs in rain forest on Christmas Island, Indian Ocean-activity patterns, density and biomass. J Trop Ecol 13:17–38Google Scholar
  42. Green PT (1998) Litterfall in rain forest on Christmas Island, Indian Ocean: quantity, seasonality, and composition. Biotropica 30:671–676CrossRefGoogle Scholar
  43. Green PT (2004a) Burrow dynamics of the red land crab Gecarcoidea natalis (Brachyura: Gecarcinidae) in rain forest on Christmas Island (Indian Ocean). J Crust Biol 24:340–349CrossRefGoogle Scholar
  44. Green PT (2004b) Field observations of moulting and moult increment in the red land crab, Gecarcoidea natalis (Brachyura, Gecarcinidae), on Christmas Island (Indian Ocean). Crustaceana 77:125–128CrossRefGoogle Scholar
  45. Green PT, Lake PS, O’Dowd DJ (1999) Monopolization of litter processing by a dominant land crab on a tropical oceanic island. Oecologia 119:435–444CrossRefGoogle Scholar
  46. Green PT, O’Dowd DJ, Lake PS (1997) Control of seedling recruitment by land crabs in rain forests on a remote oceanic island. Ecology 112:39–49Google Scholar
  47. Greenaway P (1999) Physiological diversity and the colonisation of land. In: Schram FR, von Vaupel Klein JC (eds) Proceedings of the fourth international crustacean congress, vol I, Amsterdam, The Netherlands, 20–24 July 1998. Brill Academic Publishers, Leiden, pp 823–842Google Scholar
  48. Greenaway P (2001) Sodium and water balance in free-ranging robber crabs, Birgus latro (Anomura: Coenobitidae). J Crust Biol 21:317–327CrossRefGoogle Scholar
  49. Greenaway P (2003) Terrestrial adaptations in the Anomura (Crustacea: Decapoda). Mem Mus Vic 60:13–26Google Scholar
  50. Greenaway P, Linton S (1995) Dietary assimilation and food retention time in a herbivorous terrestrial crab, Gecarcoidea natalis. Physiol Zool 68:1006–1028Google Scholar
  51. Greenaway P, Raghaven S (1998) Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in rain forest. Physiol Zool 71:36–44PubMedGoogle Scholar
  52. Hagerman AE, Butler LG (1991) Tannins and lignins. In: Rosenthal GA, Berenbaum MR (eds) Herbivores their interactions with secondary plant metabolites, vol 1, 2nd edn. Academic Press, San Diego, pp 355–386Google Scholar
  53. Hartnoll RG (1988) Evolution, systematics and geographical distribution. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, New York, pp 6–53Google Scholar
  54. Henning HG (1975) Kampf-, fortplanzungs- und hautungsverhalten-wachstum und geschlechtsreife von Cardisoma guanhumi Latreille (Crustacea, Brachyura). Forma Funct 8:463–510Google Scholar
  55. Herreid CF (1963) Observations on the feeding behaviour of Cardisoma guanhumi (Latreille) in Southern Florida. Crustaceana 5:176–180Google Scholar
  56. Hicks J, Rumpff H, Yorkston H (1990) Christmas crabs, 2nd edn. Christmas Island Natural History Association, Christmas Island, Indian Ocean, pp 1–81Google Scholar
  57. Icely JD, Nott JA (1992) Digestion and absorption: digestive system and associated organs. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, vol 10. Decapod Crustacea. Wiley–Liss Inc., New York, pp 147–201Google Scholar
  58. Jiménez C, Ortega-Rubio A, Alvarez-Cardenas S, Arnaud G (1994) Ecological aspects of the land crab Gecarcinus planatus (Decapoda: Gecarcinidae) in Socorro Island, Mexico. Biol Conserv 69:9–3CrossRefGoogle Scholar
  59. Johnston DJ, Yellowlees D (1998) Relationship between dietary preferences and digestive enzyme complement of the slipper lobster Thenus orientalis (Decapoda: Scyllaridae). J Crust Biol 18:656–665CrossRefGoogle Scholar
  60. Johnston D, Freeman J (2005) Dietary preference and digestive enzymes activities as indicators of trophic resource utilization by six species of crab. Biol Bull 208:36–46PubMedCrossRefGoogle Scholar
  61. Kaehler S, Kennish R (1996) Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong. Bot Mar 39:11–17CrossRefGoogle Scholar
  62. Kellman M, Delfosse B (1993) Effect of the red land crab (Gecarcinus lateralis) on leaf litter in a tropical dry forest in Veracruz, Mexico. J Trop Ecol 9:55–65CrossRefGoogle Scholar
  63. Lee SY (1989) The importance of sesarminae crabs Chiromanthes spp. and inundation frequency on mangrove (Kandelia candel (L.) Druce) leaf litter turnover in a Hong Kong tidal shrimp pond. J Exp Mar Biol Ecol 131:23–43CrossRefGoogle Scholar
  64. Lee SY (1998) Ecological role of grapsid crabs in mangrove ecosystems: a review. Mar Freshwater Res 49:335–343CrossRefGoogle Scholar
  65. Lindquist ES, Carroll CR (2004) Differential seed and seedling predation by crabs: impacts on tropical coastal forest composition. Oecologia 141:661–671PubMedCrossRefGoogle Scholar
  66. Linton SM, Greenaway P (1997) Intracellular purine deposits in the gecarcinid land crab, Gecarcoidea natalis. J Morph 231:101–110CrossRefGoogle Scholar
  67. Linton SM, Greenaway P (2000) The nitrogen requirements and dietary nitrogen utilization for the gecarcinid land crab Gecarcoidea natalis. Physiol Biochem Zool 73:209–218PubMedCrossRefGoogle Scholar
  68. Linton SM, Greenaway P (2004) Presence and properties of cellulase & hemicellulase enzymes of the gecarcinid land crabs, Gecarcoidea natalis and Discoplax hirtipes. J Exp Biol 4095–4104Google Scholar
  69. Linton SM, Greenaway P, Towle DW (2006) Endogenous production of endo-β-1,4-glucanase by decapod crustaceans. J Comp Physiol B 176:339–348PubMedCrossRefGoogle Scholar
  70. Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc Lond B 270:S69–S72CrossRefGoogle Scholar
  71. Lubitz JA (1963) The protein quality, digestibility, and composition of algae, Chlorella 71105. J Food Sci 28:229–232CrossRefGoogle Scholar
  72. Martin MM, Martin JS (1984) Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61:342–345CrossRefGoogle Scholar
  73. Martin MM, Rockholm DC, Martin JS (1985) Effects of surfactants, pH, and certain cations on precipitation of proteins by tannins. J Chem Ecol 11:485–494CrossRefGoogle Scholar
  74. Martin JS, Martin MM, Bernays EA (1987) Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defence. J Chem Ecol 13:605–621CrossRefGoogle Scholar
  75. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Ann Rev Ecol Syst 11:119–611CrossRefGoogle Scholar
  76. Micheli F (1993a) Effect of mangrove litter species and availability on survival, moulting and reproduction of the mangrove crab Sesarma messa. J Exp Mar Biol Ecol 171:149–163CrossRefGoogle Scholar
  77. Micheli F (1993b) Feeding ecology of mangrove crabs in North Eastern Australia: mangrove litter consumption by Sesarma messa and Sesarma smithii. J Exp Mar Biol Ecol 171:165–186CrossRefGoogle Scholar
  78. Micheli F, Gherardi F, Vannini M (1991) Feeding and burrowing ecology of two east African mangrove crabs. Mar Biol 111:247–254CrossRefGoogle Scholar
  79. Mishra SC, Sen-Sarma PK (1987) pH trends in the gut of xylophagous insects and their adaptive significance. Mater Organismen (Berl) 22:311–319Google Scholar
  80. Mole S, Waterman PG (1987) Tannins as antifeedants to mammalian herbivores-still an open question? In: Walter GC (ed) Allechemicals role in agriculture and forestry. American Chemical Society, Washington, DC, pp 572–587Google Scholar
  81. Monk DC (1976) The distribution of cellulase in freshwater invertebrates of different feeding habits. Freshwater Biol 6:471–475CrossRefGoogle Scholar
  82. Neilson MJ, Giddins RL, Richards GN (1986) Effect of tannins on the palatability of mangrove leaves to the tropical sesarminid crab Neosarmatium smithi. Mar Ecol Prog Ser 34:185–186Google Scholar
  83. Ng PKL (1988) The freshwater crabs of peninsular Malaysia and Singapore. Shing Le Publishers Pty Ltd., Singapore pp 156Google Scholar
  84. Nordhaus I (2004) Feeding ecology of the semi-terrestrial crab Ucides cordatus cordatus (Decapoda: Brachyura) in a mangrove forest in northern Brazil. PhD Thesis. University of BremenGoogle Scholar
  85. Nordhaus I, Wolff M, Diele K (2006) Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Est Coast Shelf Sci 67:239–250CrossRefGoogle Scholar
  86. O’Dowd DJ, Lake PS (1989) Red crabs in rainforest, Christmas Island: removal and relocation of leaf-fall. J Trop Ecol 5:337–348Google Scholar
  87. O’Dowd DJ, Lake PS (1991) Red crabs in rain forest, Christmas Island: Removal and fate of fruits and seeds. J Trop Ecol 7:113–122Google Scholar
  88. Omondi JG, Stark JR (1995) Some digestive carboygdrases from the midgut gland of Penaeus indicus and Penaeus vannamei (Decapoda: Penaeidae). Aquaculture 134:121–135CrossRefGoogle Scholar
  89. Pérez-Chi A (2005) Densities, diel activity, burrow shape, and habitat characteristics of Gecarcinus (Johngarthia) planatus Stimpson, 1860 (Decapoda, Brachyura, Gecarcinidae) at Socorro Island, Revillagigedo, Mexico. Crustaceana 78:255–272CrossRefGoogle Scholar
  90. Pinheiro MAA, Fiscarelli AG, Hattori GY (2005) Growth of the mangrove crab Ucides cordatus (Brachyura, Ocypodidae). J Crust Biol 25:293–301CrossRefGoogle Scholar
  91. Rao RG, Woitchik AF, Goeyens L, Van Riet A, Kazungu J, Dehairs F (1994) Carbon, nitrogen contents and stable isotope abundance in mangrove leaves from an east African coastal lagoon (Kenya). Aquat Bot 47:175183CrossRefGoogle Scholar
  92. Robertson AI (1986) Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in Northeastern Australia. J Exp Mar Biol Ecol 102:237–248CrossRefGoogle Scholar
  93. Robertson AI (1988) Decomposition of mangrove leaf litter in tropical Australia. J Exp Mar Biol Ecol 116:235–247CrossRefGoogle Scholar
  94. Robertson AI, Daniel PA (1989) The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78:191–198CrossRefGoogle Scholar
  95. Robertson J, Van Soest P (1982) The detergent system of analysis and its application to human foods. In: Dekker (ed) The analysis of dietary fibre. Dekker, New York, pp 123–158Google Scholar
  96. Robinson MH, Abele LG, Robinson B (1970) Attack autotomy: a defence against predators. Sci NY 169:300–301Google Scholar
  97. Russell-Hunter WD (1970) Aquatic productivity: an introduction to some basic aspects of biological oceanography and limnology. Collier MacMillan, LondonGoogle Scholar
  98. Salminen J-P, Lempa K (2002) Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology 12:203–311CrossRefGoogle Scholar
  99. Scrivener AM, Slaytor M (1994) Properties of the endogenous cellulase from Panesthia cribrata Saussure and purification of major endo-β-1,4-glucanase components. Insect Biochem Mol Biol 24:223–231CrossRefGoogle Scholar
  100. Skov MW, Hartnoll RG (2002) Paradoxical selective feeding on a low-nutrient diet: why do mangrove crabs eat leaves? Oecologia 131:1–7CrossRefGoogle Scholar
  101. Shealer DA, Burger J (1992) Differential responses of tropical roseate terns to aerial intruders throughout the nesting cycle. Condor 94:712–719CrossRefGoogle Scholar
  102. Sherman PM (2002) Effects of land crabs on seedling densities and distributions in a mainland neotropical rain forest. J Trop Ecol 18:67–89CrossRefGoogle Scholar
  103. Sherman PM (2003) Effects of land crabs on leaf litter distributions and accumulations in a mainland tropical rain forest. Biotropica 35:365–374Google Scholar
  104. Sivasothi N (2000) Niche preferences of tree-climbing crabs in Singapore mangroves. Crustaceana 73:25–38CrossRefGoogle Scholar
  105. Slim FJ, Hemminga MA, Ochieng C, Jannick NT, Cocheret De La Morinière E, Van der Velde G (1997) Leaf litter removal by the snail Terebralia palustris (Linneaus) and sesarmid crabs in an East African mangrove forest (Gazi Bay, Kenya). J Exp Mar Biol Ecol 215:35–48CrossRefGoogle Scholar
  106. Smith TJ, Chan HT, McIvor CC, Robblee MB (1989) Comparisons of seed predation in tropical, tidal forests from three continents. Ecology 70:146–151CrossRefGoogle Scholar
  107. Sova VV, Elyakova LA, Vaskovsky VE (1970) The distribution of laminarinases in marine invertebrates. Comp Biochem Physiol 32:459–464CrossRefGoogle Scholar
  108. Steinke TD, Rajh A, Holland AJ (1993) The feeding behaviour of the red mangrove crab Sesarma meinerti de Man, 1887 (Crustacea: Decapoda: Grapsidae) and its effect on the degradation of mangrove leaf litter. S Afr J Mar Sci 13:151–160Google Scholar
  109. Stensmyr MC, Erland S, Hallberg E, Wallen R, Greenaway P, Hansson BS (2005) Insect-like olfactory adaptations in the terrestrial giant robber crab. Curr Biol 15:116–121PubMedCrossRefGoogle Scholar
  110. Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B 109:1–62CrossRefGoogle Scholar
  111. Tokuda G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis. Zool Sci 14:83–93PubMedCrossRefGoogle Scholar
  112. Wang LS, Zhang YZ, Yang H, Gao PJ (2004) Quantitative estimate of the effect of cellulase components during degradation of cotton fibers. Carbohydrate Res 339:819–824CrossRefGoogle Scholar
  113. Wafar S, Untawale AG, Wafar M (1997) Litter fall and energy flux in a mangrove ecosystem. Est Coast Shelf Sci 44:111–124CrossRefGoogle Scholar
  114. Warner GF (1967) The life history of the tree crab Aratus pisoni. J Zool Lond 153:320–335CrossRefGoogle Scholar
  115. Watanabe H, Nakamura M, Tokuda G, Yamaoka I, Scrivener AM, Noda H (1997) Site of secretion and properties of endogenous endo-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem Mol Biol 27:305–313PubMedCrossRefGoogle Scholar
  116. Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178PubMedCrossRefGoogle Scholar
  117. Wigglesworth JM, Griffith DRW (1994) Carbohydrate digestion in Penaeus monodon. Mar Biol 120:571–578CrossRefGoogle Scholar
  118. Wilde JE, Linton SM, Greenaway P (2004) Dietary assimilation and the digestive strategy of the omnivorous anomuran land crab Birgus latro (Coenobitidae). J Comp Physiol B 174:299–308PubMedCrossRefGoogle Scholar
  119. Williams TR, Hynes HBN, Kershaw WE (1961) Maintenance and diet of African freshwater crabs associated with Simulium naevei. Ann Soc Belge Med Trop 41:291–292PubMedGoogle Scholar
  120. Wolcott DL, O’Connor N (1992) Herbivory in crabs: adaptations and ecological considerations. Am Zool 32:370–381Google Scholar
  121. Wolcott DL, Wolcott TG (1984) Food quality and cannibalism in the red land crab, Gecarcinus lateralis. Physiol Zool 57:318–324Google Scholar
  122. Wolcott DL, Wolcott TG (1987) Nitrogen limitation in the herbivorous land crab Cardisoma guanhumi. Physiol Zool 60:262–268Google Scholar
  123. Wolcott TG (1988) Ecology. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, New York, pp 55–95Google Scholar
  124. Wolcott TG, Wolcott DL (1988) Availability of salts is not a limiting factor for the land crab Gecarcinus lateralis (Freminville). J Exp Mar Biol Ecol 120:199–219CrossRefGoogle Scholar
  125. Wood TM, McCrae SI, Bhat KM (1989) The mechanism of fungal cellulase action. Biochem J 260:37–43PubMedGoogle Scholar
  126. Xue XM, Anderson AJ, Richardson NA, Xue GP, Mather PB (1999) Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus). Aquaculture 180:373–386CrossRefGoogle Scholar
  127. Yokoe Y, Yasumasu I (1964) The distribution of cellulase in invertebrates. Comp Biochem Physiol 13:323–338PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Life and Environmental SciencesDeakin UniversityWaurn PondsAustralia
  2. 2.School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations