Skip to main content
Log in

Endogenous production of endo-β-1,4-glucanase by decapod crustaceans

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The potential ability to produce cellulase enzymes endogenously was examined in decapods crustaceans including the herbivorous gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes, the amphibious freshwater crab Austrothelphusa transversa, the terrestrial hermit crab, Coenobita variabilis the parastacid crayfish Euastacus, and the crayfish Cherax destructor. The midgut gland of both G. natalis and D. hirtipes contained substantial total cellulase activities and activities of the cellulase enzymes endo-β-1,4-glucanase and β-glucosidase. With the exception of total cellulase and β-glucosidase from D. hirtipes, the enzyme activities within the midgut gland were higher than those within the digestive juice. Hence, the enzyme activities appear to reside predominantly within midgut gland, providing indirect evidence for endogenous synthesis of cellulase enzymes by this tissue. A 900 bp cDNA fragment encoding a portion of the endo-β-1,4-glucanase amino acid sequence was amplified by RT-PCR using RNA isolated from the midgut gland of C. destructor, Euastacus, A. transversa and C. variabilis. This provided direct evidence for the endogenous production of endo-β-1,4-glucanase. The 900 bp fragment was also amplified from genomic DNA isolated from the skeletal muscle of G. natalis and D. hirtipes, clearly indicating that the gene encoding endo-β-1,4-glucanase is also present in these two species. As this group of evolutionary diverse crustacean species possesses and expresses the endo-β-1,4-glucanase gene it is likely that decapod crustaceans generally produce cellulases endogenously and are able to digest cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239:317–324

    Article  PubMed  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 22:10881–10890

    Article  Google Scholar 

  • Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22:1273–1284

    Article  PubMed  CAS  Google Scholar 

  • Green PT, Lake PS, O’Dowd DJ (1999) Monopolization of litter processing by a dominant land crab on a tropical oceanic island. Oecologia 119:435-444

    Article  Google Scholar 

  • Greenaway P, Linton S (1995) Dietary assimilation and food retention time in a herbivorous terrestrial crab, Gecarcoidea natalis. Physiol Zool 68:1006-1028

    Google Scholar 

  • Greenaway P (2003) Terrestrial adaptations in the Anomura (Crustacea: Decapoda). Mem Mus Victoria 60:13–26

    Google Scholar 

  • Greenaway P, Raghaven S (1998) Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in rain forest. Physiol Zool 71:36-44

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Kellman M, Delfosse B (1993) Effect of the red land crab (Gecarcinus lateralis) on leaf litter in a tropical dry forest in Veracruz, Mexico. J Trop Ecol 9:55-65

    Article  Google Scholar 

  • Li L, Frohlich J, Pfeiffer P, Konig H (2003) Termite gut symbiotic archaezoa are becoming living metabolic fossils. Eukaryotic cell 2:1091–1098

    Article  PubMed  CAS  Google Scholar 

  • Linton SM, Greenaway P (2004) Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs, Gecarcoidea natalis and Discoplax hirtipes. J Exp Biol 207:4095–4104

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc Lond B 270:S69–S72

    Article  CAS  Google Scholar 

  • Musgrove RJ (1988) Digestive ability of the freshwater crayfish Paranephrops zealandicus (White) (Parastacidae) and the role of microbial enzymes. Freshw Biol 20:305–314

    Article  CAS  Google Scholar 

  • Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma J-I (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784

    Article  PubMed  CAS  Google Scholar 

  • Scrivener AM, Slaytor M, Rose HA (1989) Symbiont independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach. J Insect Physiol 35:935-941

    Article  Google Scholar 

  • Sherman PM (2002) Effects of land crabs on seedling densities and distributions in a mainland neotropical rain forest. J Trop Ecol 18:67-89

    Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockcroaches: what role do symbionts play? Comp Biochem Physiol 103B:775-784

    CAS  Google Scholar 

  • Tokuda G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis. Zool Sci 14:83–93

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Saito H, Watanabe H (2002) A digestive β-glucosidase from the salivary glands of the termite, Neotermes koshunensis (Shiraki): distribution, characterization and isolation of its precursor cDNA by 5′- and 3′-RACE amplifications with degenerate primers. Insect Biochem Molec Biol 32:1681–1689

    Article  CAS  Google Scholar 

  • Towle DW, Paulsen RS, Weihrauch D, Kordylewski M, Salvador C, Lignot JH, Spanings-Pierrot C (2001) Na+ K+-ATPase in gills of the blue crab Callinextes sapidus. cDNA sequencing and salinity-related expression of α-subunit mRNA and protein. J Exp Biol 204:4005–4012

    PubMed  CAS  Google Scholar 

  • Watanabe H, Nakamura M, Tokuda G, Yamaoka I, Scrivener AM, Noda H (1997) Site of secretion and properties of endogous endo-β-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem Molec Biol 27:305–313

    Article  CAS  Google Scholar 

  • Watanabe H, Hiroaki N, Gaku T, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Wilde JE, Linton SM, Greenaway P (2004) Dietary assimilation and the digestive strategy of the omnivorous anomuran land crab Birgus latro (Coenobitidae). J Comp Physiol B 174:299–308

    Article  PubMed  CAS  Google Scholar 

  • Xue XM, Anderson AJ, Richardson NA, Xue GP, Mather PB (1999) Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus). Aquaculture 180:373-386

    Article  CAS  Google Scholar 

  • Zimmer M, Topp W (1998) Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J Chem Ecol 24:1397-1408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. McDonald for technical assistance. This work was supported by Australian Research Council, the UNSW grants to P.G., the National Science Foundation Grants to D.W.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Linton.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linton, S.M., Greenaway, P. & Towle, D.W. Endogenous production of endo-β-1,4-glucanase by decapod crustaceans. J Comp Physiol B 176, 339–348 (2006). https://doi.org/10.1007/s00360-005-0056-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0056-5

Keywords

Navigation