Skip to main content
Log in

Low activities of digestive enzymes in the guts of herbivorous grouse (Aves: Tetraoninae)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Avian herbivores face the exceptional challenge of digesting recalcitrant plant material while under the selective pressure to reduce gut mass as an adaptation for flight. One mechanism by which avian herbivores may overcome this challenge is to maintain high activities of intestinal enzymes that facilitate the digestion and absorption of nutrients. However, previous studies in herbivorous animals provide equivocal evidence as to how activities of digestive enzymes may be adapted to herbivorous diets. For example, “rate-maximizing” herbivores generally exhibit rapid digesta transit times and high activities of digestive enzymes. Conversely, “yield-maximizing” herbivores utilize long gut retention times and express lower activities of digestive enzymes. Here, we investigated the activities of digestive enzymes (maltase, sucrase, aminopeptidase-N) in the guts of herbivorous grouse (Aves: Tetraoninae) and compared them to activities measured in several other avian species. We found that several grouse species exhibit activities of enzymes that are dramatically lower than those measured in other birds. We propose that grouse may use a “yield-maximizing” strategy of digestion, which is characterized by relatively long gut retention times and generally lower enzyme activities. These low activities of intestinal digestive enzyme could have ecological and evolutionary consequences, as grouse regularly consume plants with compounds known to inhibit digestive enzymes. However, more comprehensive studies on passage rates, digestibility, and microbial contributions will be necessary to understand the full process of digestion in herbivorous birds.

Zusammenfassung

Geringe Aktivität der Verdauungsenzyme im Darm von Raufußhühnern (Aves: Tetraoninae)

Die Pflanzenfresser unter den Vögeln leben mit der besonderen Herausforderung, widerstandsfähiges Pflanzenmaterial verdauen zu müssen und dabei unter dem Selektionsdruck zu stehen, die Masse im Darm als Anpassung an das Fliegen zu reduzieren. Ein Mechanismus zum Meistern dieser Herausforderung wäre das Aufrechterhalten einer hohen Enzymaktivität im Darm, die die Verdauung und die Aufnahme der Nährstoffe erleichtert. Frühere Untersuchungen an pflanzenfressenden Tieren liefern jedoch unklare Beweise dafür, wie die Aktivität von Verdauungsenzymen an die Ernährungsweise der Pflanzenfresser adaptiert sein könnte. Zum Beispiel zeigen “Raten-maximierende” Pflanzenfresser im allgemeinen kurze Verdauungszeiten und hohe Aktivitäten der Verdauungsenzyme. Umgekehrt nutzen “Ertrags-maximierende” Pflanzenfresser lange Verweilzeiten im Darm bei geringerer Enzymaktivität. Wir untersuchten die Aktivität von Verdauungsenzymen (Maltase, Sucrase, Aminopeptidase-N) in den Eingeweiden pflanzenfressender Raufußhühner (Aves: Tetraoninae) und verglichen sie mit der Aktivität, die bei verschiedenen anderen Vogelarten gemessen wurde. Dabei fanden wir heraus, dass mehrere Raufußhühner-Arten Enzymaktivitäten aufweisen, die dramatisch niedriger sind als die bei anderen Vögeln gemessenen. Wir folgern daraus, dass Raufußhühner bei ihrer Verdauung möglicherweise eine “Ertrags-maximierende” Strategie einsetzen, die sich durch relativ lange Verweildauern im Darm und einer im allgemeinen geringeren Enzymaktivität auszeichnet. Diese geringe Aktivität der Verdauungsenzyme könnte ökologische und evolutionsbiologische Folgen haben, da Raufußhühner regelmäßig Pflanzen mit Verbindungen verzehren, von denen bekannt ist, dass sie Verdauungsenzyme hemmen. Umfassendere Untersuchungen zur Verdaulichkeit und zur Durchgangsgeschwindigkeit der Nahrung durch den Darm sind jedoch notwendig, um den ganzen Verdauungsprozess bei pflanzenfressenden Vögeln zu verstehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Marzooqi W, Al-Maskari ZAS, Johnson EH, Al-Kharousi K, Mahgoub O, Al-Saqri NM, Tahir YE (2019) Comparative evaluation of growth performance, meat quality and intestinal development of indigenous and commercial chicken strains. Int J Poult Sci 18:174–180

    CAS  Google Scholar 

  • Arshad MI, Zakarian M, Sajap AS, Ismail A (2000) Food and feeding habits of red junglefowl Pakistan. J Biol Sci 3:1024–1026

    Google Scholar 

  • Ayres MP (1993) Plant defense, herbivory, and climate change. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer Associates, Sunderland, pp 75–94

    Google Scholar 

  • Bocca M, Caprio E, Chamberlain D, Rolando A (2014) The winter roosting and diet of Black Grouse Tetrao tetrix in the north-western Italian Alps. J Ornithol 155:183–194. https://doi.org/10.1007/s10336-013-1000-1

    Article  Google Scholar 

  • Brittas R (1988) Nutrition and reproduction of the Willow Grouse Lagopus lagopus in Central Sweden. Ornis Scand 19:49–57

    Google Scholar 

  • Cheng KM, Bennett DC, Mills AD (2010) The Japanese quail. In: Hubrecht R, Kirkwood J (eds) The UFAW handbook on the care and management of laboratory and other research animals. Wiley Blackwell, Hoboken, pp 655–673

    Google Scholar 

  • Choat JH, Robbins WD, Clements KD (2004) The trophic status of herbivorous fishes on coral reefs II: food processing modes and trophodynamics. Mar Biol 145:445–454

    Google Scholar 

  • Clemens ET, Stevens CE, Southworth M (1975) Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of geese. J Nutr 105:1341–1350

    CAS  PubMed  Google Scholar 

  • Clements KD, Rees D (1998) Preservation of inherent contractility in isolated gut segments of herbivorous and carnivorous marine fish. J Comp Physiol B 168:61–72

    Google Scholar 

  • Clissold FJ, Tedder BJ, Conigrave AD, Simpson SJ (2010) The gastrointestinal tract as a nutrient-balancing organ. Proc R Soc B Biol Sci 277:1751–1759

    Google Scholar 

  • Combs DL, Fredrickson LH (1996) Foods used by male Mallards wintering in Southeatern Missouri. J Wildl Manag 60:603–610

    Google Scholar 

  • Crossman DJ, Choat JH, Clements KD (2014) Nutritional ecology of nominally herbivorous fishes on coral reefs. Mar Ecol Prog Ser 296:129–142

    Google Scholar 

  • Dabbert CB, Martin TE (2000) Diet of mallards wintering in greentree reservoirs in southeastern Arkansas. J Field Ornithol 71:423–428

    Google Scholar 

  • Dahlqvist A (1962) A method for the determination of amylase in intestinal content. Scand J Clin Lab Investig 14:145–151

    CAS  Google Scholar 

  • Ellison LN (1976) Winter food selection by Alaskan Spruce Grouse. J Wildl Manag 40:205–213

    CAS  Google Scholar 

  • Fassbinder-Orth CA, Karasov WH (2006) Effects of feed restriction and realimentation on digestive and immune function in the leghorn chick. Poult Sci 85:1449–1456

    CAS  PubMed  Google Scholar 

  • Foley WJ, Cork SJ (1992) Use of fibrous diets by small herbivores: how far can the rules be “bent”? Trends Ecol Evol 7:159–162

    CAS  PubMed  Google Scholar 

  • Forbey JS, Wiggins NL, Frye GG, Connelly JW (2013) Hungry grouse in a warming world: emerging risks from plant chemical defenses and climate change. Wildl Biol 19:374–381

    Google Scholar 

  • Garcia-Gonzalez R, Aldezabal A, Laskurain NA, Margalida A, Novoa C (2016) Influence of snowmelt timing on the diet quality of the Pyrenean rock ptarmiga (Lagopus muta pyrenaica): implications for reproductive success. PLoS ONE 11:e0148632

    PubMed  PubMed Central  Google Scholar 

  • Gasaway WC, Holleman DF, White RG (1975) Flow of digesta in the intestine and cecum of the rock ptarmigan. Condor 77(4):467–474

    Google Scholar 

  • German DP (2009) Inside the guts of wood-eating catfishes: can they digest wood? J Comp Physiol B 179:1011–1023

    PubMed  PubMed Central  Google Scholar 

  • German DP, Nagle BC, Villeda JM, Ruiz AM, Thomson AW, Balderas SC, Evans DH (2010) Evolution of herbivory in a carnivorous clade of minnows (Teleostei: Cyprinidae): effects on gut size and digestive physiology. Physiol Biochem Zool 83:1–18. https://doi.org/10.1086/648510

    Article  PubMed  Google Scholar 

  • German DP, Sung A, Jhaveri P, Agnihotri R (2015) More than one way to be an herbivore: convergent evolution of herbivory using different digestive strategies in prickleback fishes (Strichaeidae). Zoology 118:161–170

    PubMed  Google Scholar 

  • Gill FB, Coe JE (1990) Ornithology. W. H. Freeman, New York

    Google Scholar 

  • Graial A (1995) Digestive efficiency of the Hoatzin, Opisthocomus hoazin: a folivorous bird with foregut fermentation. Ibis 137:383–388

    Google Scholar 

  • Gurchinoff S, Robinson WL (1972) Chemical characteristics of jackpine needles selected by feeding Spruce Grouse. J Wildl Manag 36:80–87

    Google Scholar 

  • Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783

    PubMed  PubMed Central  Google Scholar 

  • Karasov WH, Martínez del Rio C (2007) Physiological ecology: how animals process energy, nutrients, and toxins. Princeton University Press, Princeton

    Google Scholar 

  • Kawahara T (1973) Comparative study of quantitative traits between wild and domestic Japanese quail (Coturnix coturnix japonica). Exp Anim 22:139

    Google Scholar 

  • Kohl KD, Dearing MD (2011) Induced and constitutive responses of digestive enzymes to plant toxins in an herbivorous mammal. J Exp Biol 214:4133–4140

    CAS  PubMed  Google Scholar 

  • Kohl KD, Brzęk P, Caviedes-Vidal E, Karasov WH (2011) Pancreatic and intestinal carbohydrases are matched to dietary starch level in wild passerine birds. Physiol Biochem Zool 84:195–203. https://doi.org/10.1086/658146

    Article  CAS  PubMed  Google Scholar 

  • Kohl KD, Pitman E, Robb BC, Connelly JW, Dearing MD, Forbey JS (2015) Monoterpenes as inhibitors of digestive enzymes and counter adaptations in a specialist avian herbivore. J Comp Physiol B 185:425–434

    CAS  PubMed  Google Scholar 

  • Kohl KD, Dearing MD, Connelly JW, Forbey JS (2016) Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw144

    Article  PubMed  Google Scholar 

  • Kohl KD, Ciminari ME, Chedlack JG, Leafloor JO, Karasov WH, McWilliams SR, Caviedes-Vidal E (2017a) Modulation of digestive enzyme activities in the avian digestive tract in relation to diet compisition and quality. J Comp Physiol B 187:339–351

    CAS  PubMed  Google Scholar 

  • Kohl KD, Ciminari ME, Chediack JG, Leafloor JO, Karasov WH, McWilliams SR, Caviedes-Vidal E (2017b) Modulation of digestive enzyme activities in the avian digestive tract in relation to diet composition and quality. J Comp Physiol B 187:339–351

    CAS  PubMed  Google Scholar 

  • Lopez-Calleja VM, Bozinovic F (1999) Feeding behavior and assimilation efficiency of the Rufous-tailed Plantcutter: a small avian herbivore. Condor 101(3):705–710

    Google Scholar 

  • Malheiros RD, Moraes VM, Collin A, Decuypere E, Buyse J (2003) Free diet selection by broilers as influenced by dietary macronutrient ratio and corticosterone supplementation. 1. Diet selection, organ weights, and plasma metabolites. Poult Sci 82:123–131

    CAS  PubMed  Google Scholar 

  • Martinez del Rio C (1990) Dietary, phylogenetic, and ecological correlates of intestinal sucrase and maltase activity in birds. Physiol Zool 63:987–1011

    CAS  Google Scholar 

  • McBee RH, West GC (1969) Cecal fermentation in the willow ptarmigan. Condor 71(1):54–58

    Google Scholar 

  • McWhorter TJ, Caviedes-Vidal E, Karasov WH (2009) The integration of digestion and osmoregulation in the avian gut. Biol Rev 84:533–565

    PubMed  Google Scholar 

  • Meynard C, Lopez-Calleja M, Bozinovic F, Sabat P (1999) Digestive enzymes of a small avian herbivore, the Rufous-tailed Plantcutter. Condor 101:904–907

    Google Scholar 

  • Moss R (1974) Winter diets, gut lengths, and interspecific competition in Alaskan ptarmigan. Auk 91:737–746

    Google Scholar 

  • Moss R (1983) Gut size, body weight, and digestion of winter foods by grouse and ptarmigan. Condor 85(2):185–193

    Google Scholar 

  • Moss R, Parkinson JA (1972) The digestion of heather (Calluna vulgaris) by Red Grouse (Lagopus scoticus). Br J Nutr 27(2):285–298

    CAS  PubMed  Google Scholar 

  • Nagy KA (1987) Field metabolic rate and food requirement scaling in mammals and birds. Ecol Monogr 57:112–128

    Google Scholar 

  • Nagy KA (2001) Food requirements of wild animals: predictive equiations for free-living mammals, repitles, and birds. Nutr Abstr Rev Ser B 71:21–31

    Google Scholar 

  • Obst BS, Diamond JM (1989) Interspecific variation in sugar and amino acid transport by the avian cecum. J Exp Zool 3:117–126

    CAS  Google Scholar 

  • Penry DL, Jumars PA (1986) Chemical reactor analysis and optimal digestion. Bioscience 36:310–315

    CAS  Google Scholar 

  • Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. Am Nat 129:69–96

    CAS  Google Scholar 

  • Price ER, Brun A, Caviedes-Vidal E, Karasov WH (2015) Digestive adaptations of aerial lifestyles. Am Physiol Soc 30:69–78

    CAS  Google Scholar 

  • Prop J, Vulink T (1992) Digestion by Barnacle Geese in the annual cycle: the interplay between retention time and food quality. Funct Ecol 6:180–189

    Google Scholar 

  • Pulliainen E, Tunkkari P (1983) Seasonal changes in the gut length of the willow grouse (Lagopus lagopus) in Finnish Lapland. Ann Zool Fenn 20:53–56

    Google Scholar 

  • Ramirez-Otarola N, Narváez C, Sabat P (2011) Membrane-bound intestinal enzymes of passerine birds: dietary and phylogenetic correlates. J Comp Physiol B 181:817–827

    CAS  PubMed  Google Scholar 

  • Reese AT et al (2018) Microbial nitrogen limitation in the mammalian large intestine. Nat Microbiol 3:1441–1450. https://doi.org/10.1038/s41564-018-0267-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabat P, Lagos JA, Bozinovic F (1999) Test of the adaptive modulation hypothesis in rodents: dietary flexibility and enzyme plasticity. Comp Biochem Physiol A 123:83–87

    CAS  Google Scholar 

  • Salgado-Flores A, Tveit AT, Wright A-D, Pope PB, Sundset MA (2019) Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS ONE 14:e0213503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sedinger JS (1984) Protein and amino acid composition of tundra vegetation in relation to nutritional requirements of geese. J Wildl Manag 48:1128–1136

    CAS  Google Scholar 

  • Sedinger JS (1997) Adaptations to and consequences of an herbivorous diet in grouse and waterfowl. Condor 99:314–326

    Google Scholar 

  • Starling-Westerberg ANN (2001) The habitat use and diet of Black Grouse Tetrao tetrix in the Pennine hills of northern England. Bird Study 48(1):76–89

    Google Scholar 

  • Summers RW, Proctor R, Thorton M, Avey G (2004) Habitat selection and diet of the Capercaillie Tetrao urogallus in Abernethy Forest, Strathspey, Scotland. Bird Study 51:58–68

    Google Scholar 

  • Thomas VG (1984) Winter diet and intestinal proportions of rock and willow ptarmigan and sharp-tailed grouse in Ontario. Can J Zool 62:2258–2263

    Google Scholar 

  • Treichler R, Stow RW, Nelson AL (1946) Nutrient content of some winter foods of Ruffed Grouse. J Wildl Manag 10:12–17

    Google Scholar 

  • Wegge P, Kastdalen L (2008) Habitat and diet of young grouse broods: resource partitioning between Capercaillie (Tetrao urogallus) and Black Grouse (Tetrao tetrix) in boreal forests. J Ornithol 149:237–244

    Google Scholar 

  • Wu RX, Hong WS, Zhang QY, Chen SX (2009) Comparative enzyme activities of the intestinal brush border membranes of the herbivorous mudskipper Boleophthalmus pectinirostris and the carnivorous Chinese black sleeper Bostrichthys sinensis. J Appl Ichthyol 25:571–575

    CAS  Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers for their feedback to strengthen the comparative components of this manuscript. In addition, we thank Mark Richards and Maria Arendt (University of Wisconsin—Madison) for help in obtaining tissues from domestic chickens. We thank Henrik Andrén and staff at the Grimsö Wildlife Research Station for providing infrastructure and support during field collections. Portions of this study were also made possible in cooperation with the Swedish Infrastructure for Ecosystem Science (SITES). We also thank Geir Rune Rauset, Þorkell Lindberg Þórarinsson, Friðrik Jónasson, as well as Onni, the barking bird dog, for assistance with collecting birds in the field. This research was supported by the Fulbright Commission through a Fulbright-Hays Grant and National Science Foundation [DEB-1146194 and OIA-1826801 to JSF], and start-up funds from the University of Pittsburgh [to KDK]. This research fully complied with the current laws of the countries in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Kohl.

Additional information

Communicated by L. Fusani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, J., Maurer, M., Forbey, J.S. et al. Low activities of digestive enzymes in the guts of herbivorous grouse (Aves: Tetraoninae). J Ornithol 162, 477–485 (2021). https://doi.org/10.1007/s10336-020-01835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-020-01835-z

Keywords

Navigation