Altman J (1971) Control of accept and reject reflexes in the octopus. Nature 229:204–206
Article
CAS
PubMed
Google Scholar
Budelmann BU, Young JZ (1985) Central pathways of the nerves of the arm and mantle of octopus. Phil Trans R Soc Lond B 310:110–122
Article
Google Scholar
Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, Volume 2. In: Freeman WH (ed) Series of books in biology. Freeman W.H. and Company, San Francisco
Google Scholar
Cate JT (1928) Contribution a l’innervation des ventouses chez Octopus vulgaris. Arch Neirl Physiol 13:407–422
Google Scholar
Feinstein N, Nesher N, Hochner B (2011) Functional morphology of the neuromuscular system of the Octopus vulgaris arm. Vie Et Milieu 61:219–229
Google Scholar
Fiorito G et al (2014) Cephalopods in neuroscience: regulations, research and the 3Rs. Invert Neurosci 14(1):13–36. https://doi.org/10.1007/s10158-013-0165-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiorito G et al (2015) Guidelines for the care and welfare of cephalopods in research—a consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab Anim 49:1–90. https://doi.org/10.1177/0023677215580006
Article
PubMed
Google Scholar
Fossati S, Benfenati F, Zullo L (2011) Morphological characterization of the Octopus vulgaris arm. Vie et Milieu 61:191–195
Google Scholar
Fossati SM, Carella F, De Vico G, Benfenati F, Zullo L (2013) Octopus arm regeneration: role of acetylcholinesterase during morphological modification. J Exp Mar Biol Ecol 447:93–99
Article
CAS
Google Scholar
Fossati SM et al (2015) Identification and expression of acetylcholinesterase in Octopus vulgaris arm development and regeneration: a conserved role for ACHE? Mol Neurobiol 52:45–56. https://doi.org/10.1007/s12035-014-8842-2
Article
CAS
PubMed
Google Scholar
Graziadei P (1971) The nervous system of the arms. In: Young JZ (ed) The anatomy of the nervous system of Octopus vulgaris. Oxford University Press, Oxford, pp 45–62
Google Scholar
Guglielmino E, Zullo L, Cianchetti M, Follador M, Branson D, Caldwell DG (2012) The application of embodiment theory to the design and control of an octopus-like robotic arm. IEEE Int Conf Robot. https://doi.org/10.1109/ICRA.2012.6224907
Guglielmino E, Godage I, Zullo L, Caldwell DG (2013) A pragmatic bio-inspired approach to the design of octopus-inspired arms. IEEE Int Conf Intell Robot. https://doi.org/10.1109/IROS.2013.6697014
Gutfreund Y, Flash T, Yarom Y, Fiorito G, Segev I, Hochner B (1996) Organization of octopus arm movements: a model system for studying the control of flexible arms. J Neurosci 16:7297–7307
Article
CAS
PubMed
Google Scholar
Gutfreund Y, Flash T, Fiorito G, Hochner B (1998) Patterns of arm muscle activation involved in octopus reaching movements. J Neurosci 18:5976–5987
Article
CAS
PubMed
Google Scholar
Gutfreund Y, Matzner H, Flash T, Hochner B (2006) Patterns of motor activity in the isolated nerve cord of the octopus arm. Biol Bull 211:212–222. https://doi.org/10.2307/4134544
Article
PubMed
Google Scholar
Hochner B (2012) An embodied view of octopus neurobiology. Curr Biol 22:R887–R892. https://doi.org/10.1016/j.cub.2012.09.001
Article
CAS
PubMed
Google Scholar
Hochner B (2013) How nervous systems evolve in relation to their embodiment: what we can learn from octopuses and other molluscs. Brain Behav Evolut 82:19–30. https://doi.org/10.1159/000353419
Article
Google Scholar
Huffard CL (2006) Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J Exp Biol 209:3697–3707. https://doi.org/10.1242/jeb.02435
Article
PubMed
Google Scholar
Huffard CL, Boneka F, Full RJ (2005) Underwater bipedal locomotion by octopuses in disguise. Science 307:1927 https://doi.org/10.1126/science.1109616
Article
CAS
PubMed
Google Scholar
Kang R, Guglielmino E, Zullo L, Branson DT, Godage I, Caldwell DG (2016) Embodiment design of soft continuum robots. Adv Mech Eng 8:1–13. https://doi.org/10.1177/1687814016643302
Article
Google Scholar
Kier WM (2016) The musculature of coleoid cephalopod arms and tentacles. Front Cell Dev Biol 4:10. https://doi.org/10.3389/fcell.2016.00010
Article
PubMed
PubMed Central
Google Scholar
Kier WM, Smith KK (1985) Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats. Zool J Linn Soc-Lon 83:307–324
Article
Google Scholar
Kier WM, Stella MP (2007) The arrangement and function of octopus arm musculature and connective tissue. J Morphol 268:831–843. https://doi.org/10.1002/jmor.10548
Article
PubMed
Google Scholar
Levy G, Hochner B (2017) Embodied organization of Octopus vulgaris morphology, vision, and locomotion. Front Physiol. https://doi.org/10.3389/fphys.2017.00164
Article
PubMed
PubMed Central
Google Scholar
Levy G, Nesher N, Zullo L, Hochner B (2017) Motor control in soft-bodied animals. In: The oxford handbook of invertebrate neurobiology. https://doi.org/10.1093/oxfordhb/9780190456757.013.36
Li T, Nakajima K, Calisti M, Laschi C, Pfeifer R (2012) Octopus-inspired sensorimotor control of a multi-arm soft robot. IEEE Int Conf Mechatron Autom. https://doi.org/10.1109/ICMA.2012.6283271
Article
Google Scholar
Liu TH, Chiao CC (2017) Mosaic organization of body pattern control in the optic lobe of squids. J Neurosci 37:768–780. https://doi.org/10.1523/JNEUROSCI.0768-16.2017
Article
CAS
PubMed
PubMed Central
Google Scholar
Matzner H, Gutfreund Y, Hochner B (2000) Neuromuscular system of the flexible arm of the octopus: physiological characterization. J Neurophysiol 83:1315–1328
Article
CAS
PubMed
Google Scholar
Messenger J (2001) Cephalopod chromatophores: neurobiology and natural history. Biol Rev Camb Philos Soc 76:473–528
Article
CAS
PubMed
Google Scholar
Nakajima R, Shigeno S, Zullo L, De Sio F, Schmidt MR (2018) Cephalopods between science, art, and engineering: a contemporary synthesis. Front Commun 3:20. https://doi.org/10.3389/fcomm.2018.00020
Article
Google Scholar
Nodl MT, Fossati SM, Domingues P, Sanchez FJ, Zullo L (2015) The making of an octopus arm. Evodevo 6:19. https://doi.org/10.1186/s13227-015-0012-8
Article
PubMed
PubMed Central
Google Scholar
Richter S et al (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29. https://doi.org/10.1186/1742-9994-7-29
Article
PubMed
PubMed Central
Google Scholar
Rowell CHF (1963) Excitatory and inhibitory pathways in the arm of Octopus. J Exp Biol 40:257–270
Google Scholar
Rowell CHF (1966) Activity of interneurones in the arm of Octopus in response to tactile stimulation. J Exp Biol 44:589–605
CAS
PubMed
Google Scholar
Sommese L, Zullo A, Schiano C et al (2017) Possible muscle repair in the human cardiovascular system. Stem Cell Rev 13:170–191. https://doi.org/10.1007/s12015-016-9711-3
Article
CAS
Google Scholar
Sumbre G, Gutfreund Y, Fiorito G, Flash T, Hochner B (2001) Control of octopus arm extension by a peripheral motor program. Science 293:1845–1848. https://doi.org/10.1126/science.1060976
Article
CAS
PubMed
Google Scholar
Sumbre G, Fiorito G, Flash T, Hochner B (2005) Neurobiology: motor control of flexible octopus arms. Nature 433:595–596. https://doi.org/10.1038/433595a
Article
CAS
PubMed
Google Scholar
Sumbre G, Fiorito G, Flash T, Hochner B (2006) Octopuses use a human-like strategy to control precise point-to-point arm movements. Curr Biol 16:767–772. https://doi.org/10.1016/j.cub.2006.02.069
Article
CAS
Google Scholar
Yekutieli Y, Sumbre G, Flash T, Hochner B (2002) How to move with no rigid skeleton? The octopus has the answers. Biologist (London) 49:250–254
Google Scholar
Yekutieli Y, Sagiv-Zohar R, Aharonov R, Engel Y, Hochner B, Flash T (2005a) Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. J Neurophysiol 94:1443–1458. https://doi.org/10.1152/jn.00684.2004
Article
PubMed
Google Scholar
Yekutieli Y, Sagiv-Zohar R, Hochner B, Flash T (2005b) Dynamic model of the octopus arm. II. Control of reaching movements. J Neurophysiol 94:1459–1468. https://doi.org/10.1152/jn.00685.2004
Article
PubMed
Google Scholar
Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Oxford University Press, Oxford
Google Scholar
Zullo L, Hochner B (2011) A new perspective on the organization of an invertebrate brain. Commun Integr Biol 4:26–29. https://doi.org/10.4161/cib.4.1.13804
Article
PubMed
PubMed Central
Google Scholar
Zullo L, Sumbre G, Agnisola C, Flash T, Hochner B (2009) Nonsomatotopic organization of the higher motor centers in octopus. Curr Biol 19:1632–1636. https://doi.org/10.1016/j.cub.2009.07.067
Article
CAS
PubMed
Google Scholar
Zullo L, Fossati SM, Imperadore P, Nödl M-T (2017) Molecular determinants of cephalopod muscles and their implication in muscle regeneration. Front Cell Dev Biol 5:53. https://doi.org/10.3389/fcell.2017.00053
Article
PubMed
PubMed Central
Google Scholar
Zullo A, Simone E, Grimaldi M, Gagliardi M, Zullo L, Matarazzo MR, Mancini FP (2018a) Effect of nutrient deprivation on the expression and the epigenetic signature of sirtuin genes. Nutr Metab Cardiovasc Dis 28:418–424. https://doi.org/10.1016/j.numecd.2018.02.004
Article
CAS
PubMed
Google Scholar
Zullo L et al (2018b) Small-animal (18)F-FDG PET for research on Octopus vulgaris: applications and future directions in invertebrate neuroscience and tissue regeneration. J Nucl Med 59:1302–1307. https://doi.org/10.2967/jnumed.117.205393
Article
CAS
PubMed
Google Scholar