Skip to main content
Log in

Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACHE:

Acetylcholinesterase

ASW:

Artificial sea water

BCHE:

Butyrylcholinesterase

CAS:

Catalytic anionic site

CAT:

Catalytic triad

GPI:

Glycosylphosphatidylinositol

ORF:

Open reading frame

PAS:

Peripheral binding site

RMSD:

Root mean square deviation

RT-qPCR:

Real-time quantitative PCR

References

  1. Jiang H, Zhang XJ (2008) Acetylcholinesterase and apoptosis. A novel perspective for an old enzyme. FEBS J 275(4):612–617. doi:10.1111/j.1742-4658.2007.06236.x

    Article  CAS  PubMed  Google Scholar 

  2. Soreq H, Seidman S (2001) Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  CAS  PubMed  Google Scholar 

  3. Layer PG, Willbold E (1995) Novel functions of cholinesterases in development, physiology and disease. Prog Histochem Cytochem 29(3):1–94

    CAS  PubMed  Google Scholar 

  4. Singer M, Davis MH, Arkowitz ES (1960) Acetylcholinesterase activity in the regenerating forelimb of the adult newt, triturus. J Embryol Exp Morpholog 8:98–111

    CAS  Google Scholar 

  5. Lenique PM, Feral JP (1976) A mechanism of action of neurotransmitters on the regeneration of the planarian worm Dugesia tigrina. Role of acetylcholine as a negative feed-back. Acta Zool 57:1–5

    Article  Google Scholar 

  6. Srivatsan M, Peretz B (1997) Acetylcholinesterase promotes regeneration of neurites in cultured adult neurons of Aplysia. Neuroscience 77(3):921–931

    Article  CAS  PubMed  Google Scholar 

  7. Lauder JM, Schambra UB (1999) Morphogenetic roles of acetylcholine. Environ Health Perspect 107:65–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vogel-Hopker A, Sperling LE, Layer PG (2012) Co-opting functions of cholinesterases in neural, limb and stem cell development. Protein Pept Lett 19(2):155–164

    Article  PubMed  Google Scholar 

  9. Dori A, Soreq H (2006) ARP, the cleavable C-terminal peptide of “readthrough” acetylcholinesterase, promotes neuronal development and plasticity. J Mol Neurosci MN 28(3):247–255. doi:10.1385/JMN:28:3:247

    Article  CAS  PubMed  Google Scholar 

  10. Paraoanu LE, Steinert G, Klaczinski J, Becker-Rock M, Bytyqi A, Layer PG (2006) On functions of cholinesterases during embryonic development. J Mol Neurosci MN 30(1–2):201–204. doi:10.1385/JMN:30:1:201

    Article  CAS  PubMed  Google Scholar 

  11. Falugi C, Aluigi MG (2012) Early appearance and possible functions of non-neuromuscular cholinesterase activities. Front Mol Neurosci 5:54. doi:10.3389/fnmol.2012.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Behra M, Cousin X, Bertrand C, Vonesch JL, Biellmann D, Chatonnet A, Strähle U (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5:111–118

    Article  CAS  PubMed  Google Scholar 

  13. Berg L, Andersson CD, Artursson E, Hornberg A, Tunemalm AK, Linusson A, Ekstrom F (2011) Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One 6(11):e26039. doi:10.1371/journal.pone.0026039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S (1999) The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem Biol Interact 119–120:29–42

    Article  PubMed  Google Scholar 

  15. Massoulié J (2002) The origin of the molecular diversity and functional anchoring of cholinesterases. Neuro Signals 11(3):130–143

    Article  PubMed  Google Scholar 

  16. Hicks D, John D, Makova NZ, Henderson Z, Nalivaeva NN, Turner AJ (2011) Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. J Neurochem 116(5):742–746. doi:10.1111/j.1471-4159.2010.07032.x

    Article  CAS  PubMed  Google Scholar 

  17. Dvir H, Jiang HL, Wong DM, Harel M, Chetrit M, He XC, Jin GY, Yu GL, Tang XC, Silman I, Bai DL, Sussman JL (2002) X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-huperzine A and (−)-huperzine B: structural evidence for an active site rearrangement. Biochemistry 41(35):10810–10818

    Article  CAS  PubMed  Google Scholar 

  18. Pezzementi L, Johnson K, Tsigelny I, Cotney J, Manning E, Barker A, Merritt S (2003) Amino acids defining the acyl pocket of an invertebrate cholinesterase. Comp Biochem Physiol B Biochem Mol Biol 136(4):813–832

    Article  PubMed  Google Scholar 

  19. Silman I, Sussman JL (2008) Acetylcholinesterase: how is structure related to function? Chem Biol Interact 175(1–3):3–10. doi:10.1016/j.cbi.2008.05.035

    Article  CAS  PubMed  Google Scholar 

  20. Pierleoni A, Martelli PL, Casadio R (2008) PredGPI: a GPI-anchor predictor. BMC Bioinforma 9:392. doi:10.1186/1471-2105-9-392

    Article  Google Scholar 

  21. Paz A, Xie Q, Greenblatt HM, Fu W, Tang Y, Silman I, Qiu Z, Sussman JL (2009) The crystal structure of a complex of acetylcholinesterase with a bis-(-)-nor-meptazinol derivative reveals disruption of the catalytic triad. J Med Chem 52(8):2543–2549. doi:10.1021/jm801657v

    Article  CAS  PubMed  Google Scholar 

  22. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1–3):10–22. doi:10.1016/j.cbi.2010.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pegan K, Matkovic U, Mars T, Mis K, Pirkmajer S, Brecelj J, Grubic Z (2010) Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration. Chem Biol Interact 187:96–100

    Article  CAS  PubMed  Google Scholar 

  24. Xie J, Jiang H, Wan YH, Du AY, Guo KJ, Liu T, Ye WY, Niu X, Wu J, Dong XQ, Zhang XJ (2011) Induction of a 55 kDa acetylcholinesterase protein during apoptosis and its negative regulation by the Akt pathway. J Mol Cell Biol 3(4):250–259. doi:10.1093/jmcb/mjq047

    Article  CAS  PubMed  Google Scholar 

  25. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253(5022):872–879

    Article  CAS  PubMed  Google Scholar 

  26. Shafferman A, Kronman C, Flashner Y, Leitner M, Grosfeld H, Ordentlich A, Gozes Y, Cohen S, Ariel N, Barak D et al (1992) Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem 267(25):17640–17648

    CAS  PubMed  Google Scholar 

  27. Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D’Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P (2014) Cephalopods in neuroscience: regulations, research and the 3Rs. Invert Neurosci IN. doi:10.1007/s10158-013-0165-x

    PubMed  Google Scholar 

  28. Arnold JM (1965) Normal embryonic stages of the squid, Loligo pealii (Lesueur). Biol Bull 128(1):24–32

    Article  Google Scholar 

  29. Xu Y, Colletier JP, Weik M, Jiang H, Moult J, Silman I, Sussman JL (2008) Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophys J 95(5):2500–2511. doi:10.1529/biophysj.108.129601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31(13):3375–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci Publ Protein Soc 15(11):2507–2524. doi:10.1110/ps.062416606

    Article  CAS  Google Scholar 

  32. Mackerell ADJ, Feig M, Brooks CL (2004) 3rd Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  PubMed  Google Scholar 

  33. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sirakov M, Zarrella I, Borra M, Rizzo F, Biffali E, Arnone MI, Fiorito G (2009) Selection and validation of a set of reliable reference genes for quantitative RT-PCR studies in the brain of the Cephalopod Mollusc Octopus vulgaris. BMC Mol Biol 10:70. doi:10.1186/1471-2199-10-70

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tiveron MC, Hirsch MR, Brunet JF (1996) The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J Neurosci Off J Soc Neurosci 16(23):7649–7660

    CAS  Google Scholar 

  36. Lee PN, Callaerts P, De Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424(6952):1061–1065. doi:10.1038/nature01872

    Article  CAS  PubMed  Google Scholar 

  37. Talesa V, Grauso M, Arpagaus M, Giovannini E, Romani R, Rosi G (1999) Molecular cloning and expression of a full-length cDNA encoding acetylcholinesterase in optic lobes of the squid Loligo opalescens: a new member of the cholinesterase family resistant to diisopropyl fluorophosphate. J Neurochem 72(3):1250–1258

    Article  CAS  PubMed  Google Scholar 

  38. Harel M, Kryger G, Rosenberry TL, Mallender WD, Lewis T, Fletcher RJ, Guss JM, Silman I, Sussman JL (2000) Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci Publ Protein Soc 9(6):1063–1072. doi:10.1110/ps.9.6.1063

    Article  CAS  Google Scholar 

  39. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  40. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(Web Server issue):W557–W559. doi:10.1093/nar/gki352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pang YP (2006) Novel acetylcholinesterase target site for malaria mosquito control. PLoS One 1:e58. doi:10.1371/journal.pone.0000058

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fossati SM, Carella F, De Vico G, Benfenati F, Zullo L (2013) Octopus arm regeneration: role of acetylcholinesterase during morphological modification. JEMBE 447:93–99

    Article  CAS  Google Scholar 

  43. Futerman AH, Low MG, Ackermann KE, Sherman WR, Silman I (1985) Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetylcholinesterase. Biochem Biophys Res Commun 129(1):312–317

    Article  CAS  PubMed  Google Scholar 

  44. Massoulié J, Perrier N, Noureddine H, Liang D, Bon S (2008) Old and new questions about cholinesterases. Chem Biol Interact 175:30–44

    Article  PubMed  Google Scholar 

  45. Taylor P (1991) The cholinesterases. J Biol Chem 266(7):4025–4028

    CAS  PubMed  Google Scholar 

  46. Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41(1):31–91

    Article  PubMed  Google Scholar 

  47. Harel M, Kleywegt GJ, Ravelli RB, Silman I, Sussman JL (1995) Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure 3(12):1355–1366

    Article  CAS  PubMed  Google Scholar 

  48. Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem/FEBS 264(3):672–686

    Article  CAS  Google Scholar 

  49. Massoulie J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S (1998) Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J Physiol Paris 92(3–4):183–190

    Article  CAS  PubMed  Google Scholar 

  50. Grauso M, Culetto E, Combes D, Fedon Y, Toutant JP, Arpagaus M (1998) Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Lett 424(3):279–284

    Article  CAS  PubMed  Google Scholar 

  51. Combes D, Fedon Y, Grauso M, Toutant JP, Arpagaus M (2000) Four genes encode acetylcholinesterases in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. cDNA sequences, genomic structures, mutations and in vivo expression. J Mol Biol 300(4):727–742. doi:10.1006/jmbi.2000.3917

    Article  CAS  PubMed  Google Scholar 

  52. Cossu G, Eusebi F, Grassi F, Wanke E (1987) Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture. Dev Biol 123(1):43–50

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto M, Shimazaki Y, Shigeno S (2003) Atlas of the embryonic brain in the pygmy squid, Idiosepius paradoxus. Zool Sci 20(2):163–179

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Helm for the help with data collection and Andrea Contestabile for the technical support. We are also grateful to Prof. Jenny Kien for the suggestions and editorial assistance.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Maria Fossati.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(XLSX 21 kb)

Fig. S2

(XLS 28 kb)

Fig. S3

(JPEG 1201 kb)

Fig. S4

(JPEG 471 kb)

Fig. S5

(GIF 78 kb)

High Resolution Image (TIFF 19032 kb)

ESM 1

(DOCX 42 kb)

Movie S1

(AVI 6338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fossati, S.M., Candiani, S., Nödl, MT. et al. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?. Mol Neurobiol 52, 45–56 (2015). https://doi.org/10.1007/s12035-014-8842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8842-2

Keywords

Navigation