Skip to main content
Log in

Difference in dynamic properties of photoreceptors in a butterfly, Papilio xuthus: possible segregation of motion and color processing

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The eyes of the Japanese yellow swallowtail butterfly, Papilio xuthus, contain six spectral classes of photoreceptors, each sensitive either in the ultraviolet, violet, blue, green, red or broadband wavelength regions. The green-sensitive receptors can be divided into two subtypes, distal and proximal. Previous behavioral and anatomical studies have indicated that the distal subtype appears to be involved in motion vision, while the proximal subtype is important for color vision. Here, we studied the dynamic properties of Papilio photoreceptors using light stimulation with randomly modulated intensity and light pulses. Frequency response (gain) of all photoreceptor classes shared a general profile—a broad peak around 10 Hz with a declining slope towards higher frequency range. At 100 Hz, the mean relative gain of the distal green receptors was significantly larger than any other receptor classes, indicating that they are the fastest. Photoreceptor activities under dim light were higher in the ultraviolet and violet receptors, suggesting higher transduction sensitivities. Responses to pulse stimuli also distinguished the green receptors from others by their shorter response latencies. We thus concluded that the distal green receptors carry high frequency information in the visual system of Papilio xuthus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that the abbreviation, dist-G, contains both ‘double-peaked green (dG)’ and ‘single-peaked green (sG)’ spectral classes in the distal tier in our previous publications (Arikawa et al. 1999). The B class in the current study contains both narrow-B and broad-B receptor subclasses described in Kinoshita et al. (2006).

Abbreviations

B:

blue

BB:

broadband

G:

green

dist-G:

distal green

prox-G:

proximal green

LED:

light-emitting diode

R:

red

UV:

ultraviolet

V:

violet

References

  • Anderson J, Hardie RC (1996) Different photoreceptors within the same retina express unique combinations of potassium channels. J Comp Physiol A 178:513–522

    Article  CAS  Google Scholar 

  • Anderson JC, Laughlin SB (2000) Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system. Vision Res 40:13–31

    Article  CAS  PubMed  Google Scholar 

  • Arikawa K (2003) Spectral organization of the eye of a butterfly, Papilio. J Comp Physiol A 189:791–800

    Article  CAS  Google Scholar 

  • Arikawa K, Inokuma K, Eguchi E (1987) Pentachromatic visual system in a butterfly. Naturwissenschaften 74:297–298

    Article  Google Scholar 

  • Arikawa K, Mizuno S, Scholten DG, Kinoshita M, Seki T, Kitamoto J, Stavenga DG (1999) An ultraviolet absorbing pigment causes a narrow-band violet receptor and a single-peaked green receptor in the eye of the butterfly Papilio. Vision Res 39:1–8

    Article  CAS  PubMed  Google Scholar 

  • Arikawa K, Mizuno S, Kinoshita M, Stavenga DG (2003) Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of a butterfly, Papilio xuthus. J Neurosci 23:4527–4532

    CAS  PubMed  Google Scholar 

  • Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures. John Wiley and Sons Inc, New York

    Google Scholar 

  • Dyer AG, Arikawa K (2014) A hundred years of color studies in insects: with thanks to Karl von Frisch and the workers he inspired. J Comp Physiol A 200:409–410

    Article  Google Scholar 

  • Friedrich M, Wood EJ, Wu M (2011) Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J Exp Zool B 316:484–499

    Article  CAS  Google Scholar 

  • Frolov R, Immonen EV, Vähäsöyrinki M, Weckström M (2012) Postembryonic developmental changes in photoreceptors of the stick insect Carausius morosus enhance the shift to an adult nocturnal life-style. J Neurosci 32:16821–16831

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in Sensory Physiology, vol 5. Springer, Berlin Heidelberg New York Toronto, pp 1–79

    Chapter  Google Scholar 

  • He S, MacLeod DI (1997) Local nonlinearity in S-cones and their estimated light-collecting apertures. Vision Res 38:1001–1006

    Article  Google Scholar 

  • Heimonen K, Immonen EV, Frolov RV, Salmela I, Juusola M, Vähäsöyrinki M, Weckström M (2012) Signal coding in cockroach photoreceptors is tuned to dim environments. J Neurophysiol 108:2641–2652

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol A 117:127–162

    Article  Google Scholar 

  • Hodgkin A, Rushton W (1946) The electrical constants of a crustacean nerve fibre. Proc Roy Soc B 133:444–479

    Article  Google Scholar 

  • Horridge GA, Marčelja L, Jahnke R, Matič T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol A 150:271–294

    Article  Google Scholar 

  • Horridge GA, Marčelja L, Jahnke R (1984) Color vision in butterflies 1. Single colour experiments. J Comp Physiol A 155:529–542

    Article  Google Scholar 

  • Juusola M, de Polavieja GG (2003) The rate of information transfer of naturalistic stimulation by graded potentials. J Gen Physiol 122:191–206

    Article  PubMed Central  PubMed  Google Scholar 

  • Juusola M, Kouvalainen E, Järvilehto M, Weckström M (1994) Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors. J Gen Physiol 104:593–621

    Article  CAS  PubMed  Google Scholar 

  • Kaiser W (1975) The relationship between visual movement detection and colour vision in insects. In: Horridge GA (ed) The compound eye and vision in insects. Clarendon Press, Oxford, pp 359–377

    Google Scholar 

  • Kaiser PK, Boynton RM (ed) (1995) Human colour vision, 2nd edn. In. Optical Society of America, Washington DC, p 652

  • Kinoshita M, Arikawa K (2014) Color and polarization vision in foraging Papilio. J Comp Physiol A 200:513–526

    Article  Google Scholar 

  • Kinoshita M, Kurihara D, Tsutaya A, Arikawa K (2006) Blue and double-peaked green receptors depend on ommatidial type in the eye of the Japanese yellow swallowtail Papilio xuthus. Zool Sci 23:199–204

    Article  CAS  PubMed  Google Scholar 

  • Koch C (1998) Biophysics of computation: information processing in single neurons. Oxford University Press, Oxford, New York etc

    Google Scholar 

  • Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc Roy Soc B 275:947–954

    Article  Google Scholar 

  • Kv Frisch (1914) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol 37:1–238

    Google Scholar 

  • Land MF (1999) Motion and vision: why animals move their eyes. J Comp Physiol A 185:341–352

    Article  CAS  PubMed  Google Scholar 

  • Laughlin S, Weckström M (1993) Fast and slow photoreceptors—a comparative study of the functional diversity of coding and conductances in the Diptera. J Comp Physiol A 172:593–609

    Article  Google Scholar 

  • Laughlin SB, van Steveninck RRD, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36–41

    Article  CAS  PubMed  Google Scholar 

  • Lehrer M, Wehner R, Srinivasan M (1985) Visual scanning behavior in honeybees. J Comp Physiol A 157:405–415

    Article  CAS  PubMed  Google Scholar 

  • Lehrer M, Wehner R, Srinivasan M (1989) How honeybees measure their distance from objects of unknown size. J Comp Physiol A 165:605–613

    Article  Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation from color, movement, and depth—anatomy, physiology, and perception. Science 240:740–749

    Article  CAS  PubMed  Google Scholar 

  • Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological systems : the white-noise approach. Plenum Press, New York

    Book  Google Scholar 

  • Schnaitmann C, Garbers C, Wachtler T, Tanimoto H (2013) Color discrimination with broadband photoreceptors. Curr Biol 23:2375–2382

    Article  CAS  PubMed  Google Scholar 

  • Skorupski P, Chittka L (2010) Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J Neurosci 30:3896–3903

    Article  CAS  PubMed  Google Scholar 

  • Skorupski P, Chittka L (2011) Photoreceptor processing speed and input resistance changes during light adaptation correlate with spectral class in the bumblebee, Bombus impatiens. PLoS One 6:e25989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song Z, Postma M, Billings SA, Coca D, Hardie RC, Juusola M (2012) Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr Biol 22:1371–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivasan MV, Lehrer M (1984) Temporal acuity of honeybee vision: behavioural studies using moving stimuli. J Comp Physiol A 155:297–312

    Article  Google Scholar 

  • Strausfeld NJ, Lee J-K (1991) Neuronal basis for parallel visual processing in the fly. Vis Neurosci 7:13–33

    Article  CAS  PubMed  Google Scholar 

  • Takemura SY, Arikawa K (2006) Ommatidial type-specific interphotoreceptor connections in the lamina of the swallowtail butterfly, Papilio xuthus. J Comp Neurol 494:663–672

    Article  PubMed  Google Scholar 

  • Takemura S, Kinoshita M, Arikawa K (2005) Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus. J Comp Neurol 483:341–350

    Article  PubMed  Google Scholar 

  • Vähäkainu A, Vähäsöyrinki M, Weckström M (2013) Membrane filtering properties of the bumblebee (Bombus terrestris) photoreceptors across three spectral classes. J Comp Physiol A 199:629–639

    Article  Google Scholar 

  • Van Hateren J, Laughlin S (1990) Membrane parameters, signal transmission, and the design of a graded potential neuron. J Comp Physiol A 166:437–448

    Article  PubMed  Google Scholar 

  • Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92:464–467

    Article  CAS  PubMed  Google Scholar 

  • Wakakuwa M, Stavenga DG, Arikawa K (2007) Spectral organization of ommatidia in flower-visiting insects. Photochem Photobiol 83:27–34

    Article  CAS  PubMed  Google Scholar 

  • Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O’Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M (2012) Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336:925–931

    Article  CAS  PubMed  Google Scholar 

  • Weckström M, Laughlin SB (1995) Visual ecology and voltage-gated ion channels in insect photoreceptors. Trends Neurosci 18:17–21

    Article  PubMed  Google Scholar 

  • Yamaguchi S, Wolf R, Desplan C, Heisenberg M (2008) Motion vision is independent of color in Drosophila. Proc Natl Acad Sci USA 105:4910–4915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the SOKENDAI visiting professorship to MKa, the JSPS (Japanese Society for Promotion of Science) Grants-in-Aid for Scientific Research C to MKi (24570084) and A to KA (26251036), JSPS open partnership joint research project (Finland) to KA, the NARO (National Agriculture and Food Research Organization) grant for SIP (Strategic Innovation Promotion) Program “Technologies for creating next-generation agriculture, forestry and fisheries” to KA, and the research grant from the Academy of Finland (269332) to MW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, M., Kinoshita, M., Weckström, M. et al. Difference in dynamic properties of photoreceptors in a butterfly, Papilio xuthus: possible segregation of motion and color processing. J Comp Physiol A 201, 1115–1123 (2015). https://doi.org/10.1007/s00359-015-1039-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1039-y

Keywords

Navigation