Skip to main content
Log in

Color and polarization vision in foraging Papilio

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

This paper gives an overview of behavioral studies on the color and polarization vision of the Japanese yellow swallowtail butterfly, Papilio xuthus. We focus on indoor experiments on foraging individuals. Butterflies trained to visit a disk of certain color correctly select that color among various other colors and/or shades of gray. Correct selection persists under colored illumination, but is systematically shifted by background colors, indicating color constancy and simultaneous color contrast. While their eyes contain six classes of spectral receptors, their wavelength discrimination performance indicates that their color vision is tetrachromatic. P. xuthus innately prefers brighter targets, but can be trained to select dimmer ones under certain conditions. Butterflies trained to a dark red stimulus select an orange disk presented on a bright gray background over one on dark gray. The former probably appears darker to them, indicating brightness contrast. P. xuthus has a strong innate preference for vertically polarized light, but the selection of polarized light changes depending on the intensity of simultaneously presented unpolarized light. Discrimination of polarization also depends on background intensity. Similarities between brightness and polarization vision suggest that P. xuthus perceive polarization angle as brightness, such that vertical polarization appears brighter than horizontal polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arikawa K (2003) Spectral organization of the eye of a butterfly, Papilio. J Comp Physiol A 189:791–800

    Article  CAS  Google Scholar 

  • Arikawa K, Kinoshita K (2000) Learning by microbrain—from the study of color vision in Papilio. In: Kato T (ed) Frontiers of the mechanisms of memory and dementia. Elsevier, Amsterdam, pp 3–6

    Google Scholar 

  • Arikawa K, Stavenga DG (1997) Random array of colour filters in the eyes of butterflies. J Exp Biol 200:2501–2506

    PubMed  Google Scholar 

  • Arikawa K, Uchiyama H (1996) Red receptors dominate the proximal tier of the retina in the butterfly Papilio xuthus. J Comp Physiol A 178:55–61

    Article  Google Scholar 

  • Arikawa K, Inokuma K, Eguchi E (1987) Pentachromatic visual system in a butterfly. Naturwissenschaften 74:297–298

    Article  Google Scholar 

  • Balkenius A, Kelber A (2004) Colour constancy in diurnal and nocturnal hawkmoths. J Exp Biol 207:3307–3316

    Article  PubMed  Google Scholar 

  • Bandai K, Arikawa K, Eguchi E (1992) Localization of spectral receptors in the ommatidium of butterfly compound eye determined by polarization sensitivity. J Comp Physiol A 171:289–297

    Article  Google Scholar 

  • Bernard GD (1979) Red-absorbing visual pigment of butterflies. Science 203:1125–1127

    Article  CAS  PubMed  Google Scholar 

  • Blackiston D, Briscoe AD, Weiss MR (2011) Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J Exp Biol 214:509–520

    Article  PubMed  Google Scholar 

  • Briscoe AD, Bybee SM, Bernard GD, Yuan F, Sison-Mangus MP, Reed RD, Warren AD, Llorente-Bousquets J, Chiao CC (2010) Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc Natl Acad Sci USA 107:3628–3633

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen P-J, Arikawa K, Yang E-C (2013) Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus. PLoS One 8:e62240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Valois R, Jacobs G (1968) Primate color vision. Science 162:533–540

    Article  PubMed  Google Scholar 

  • el Jundi B, Pfeiffer K, Heinze S, Homberg U (2014) Integration of polarization and chromatic cues in the insect sky compass. J Comp Physiol A (in press)

  • Frisch Kv (1914) Der Farbensinn und Formensinn der Biene. Zool J Physiol 37:1–238

    Google Scholar 

  • Hamanaka Y, Kinoshita M, Homberg U, Arikawa K (2012) Immunocytochemical localization of amines and GABA in the optic lobe of the butterfly, Papilio xuthus. PLoS One 7:e41109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardie RC (1989) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704–706

    Article  CAS  PubMed  Google Scholar 

  • Hidaka T, Yamashita K (1975) Wing color pattern as the releaser of mating behavior in the swallowtail butterfly, Papilio xuthus L (Lepidoptera: Papilionidae). Appl Entomol Zool 10:263–267

    Google Scholar 

  • Hurlbert A, Wolf K (2004) Color contrast: a contributory mechanism to color constancy. Prog Brain Res 144:147–160

    PubMed  Google Scholar 

  • Ilse D (1928) Über den Farbensinn der Tagfalter. Z vergl Physiol 8:658–691

    Article  Google Scholar 

  • Ilse D (1937) New observations on responses to colours in egg-laying butterflies. Nature 140:544–545

    Article  Google Scholar 

  • Ilse D (1941) The colour vision of insects. Proc Phil Soc Glasgow 65:68–82

    Google Scholar 

  • Ilse D, Vaidya VG (1955) Spontaneous feeding response to colours in Papilio demoleus L. Proc Ind Acad Sci 43:23–31

    Google Scholar 

  • Kelber A (1999a) Ovipositing butterflies use a red receptor to see green. J Exp Biol 202:2619–2630

    PubMed  Google Scholar 

  • Kelber A (1999b) Why ‘false’ colours are seen by butterflies. Nature 402:251

    Article  CAS  PubMed  Google Scholar 

  • Kelber A (2005) Alternative use of chromatic and achromatic cues in a hawkmoth. Proc R Soc B 272:2143–2147

    Article  PubMed Central  PubMed  Google Scholar 

  • Kelber A, Henique U (1999) Trichromatic colour vision in the hummingbird hawkmoth, Macroglossum stellatarum L. J Comp Physiol A 184:535–541

    Article  Google Scholar 

  • Kelber A, Pfaff M (1999) True colour vision in the orchard butterfly, Papilio aegeus. Naturwissenschaften 86:221–224

    Article  CAS  Google Scholar 

  • Kelber A, Thunell C, Arikawa K (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480

    CAS  PubMed  Google Scholar 

  • Kelber A, Balkenius A, Warrant EJ (2002) Scotopic colour vision in nocturnal hawkmoths. Nature 419:922–925

    Article  CAS  PubMed  Google Scholar 

  • Kelber A, Balkenius A, Warrant EJ (2003) Colour vision in diurnal and nocturnal hawkmoths. Integ Comp Biol 43:571–579

    Article  Google Scholar 

  • Kien J, Menzel R (1977) Chromatic properties of interneurons in the optic lobes of the bee II Narrow band and colour opponent neurons. J Comp Physiol A 113:35–53

    Article  Google Scholar 

  • Kinoshita M, Arikawa K (2000) Colour constancy of the swallowtail butterfly, Papilio xuthus. J Exp Biol 203:3521–3530

    CAS  PubMed  Google Scholar 

  • Kinoshita M, Shimada N, Arikawa K (1999) Colour vision of the foraging swallowtail butterfly Papilio xuthus. J Exp Biol 202:95–102

    PubMed  Google Scholar 

  • Kinoshita M, Takahashi Y, Arikawa K (2008) Simultaneous color contrast in the foraging swallowtail butterfly, Papilio xuthus. J Exp Biol 211:3504–3511

    Article  PubMed  Google Scholar 

  • Kinoshita M, Takahashi Y, Arikawa K (2011a) Simultaneous brightness contrast of foraging Papilio butterflies. Proc Roy Soc B 279:1911–1918

    Article  Google Scholar 

  • Kinoshita M, Yamazato K, Arikawa K (2011b) Polarization-based brightness discrimination in the foraging butterfly, Papilio xuthus. Phil Trans Roy Soc B 366:688–696

    Article  Google Scholar 

  • Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc Roy Soc B 275:947–954

    Article  Google Scholar 

  • Kulahci IG, Dornhaus A, Papaj DR (2008) Multimodal signals enhance decision making in foraging bumble-bees. Proc R Soc B 275:797–802

    Article  PubMed Central  PubMed  Google Scholar 

  • Limeri L, Morehouse N (2014) Sensory limitations and the maintenance of color polymorphisms: Viewing the ‘alba’female polymorphism through the visual system of male Colias butterflies. Funct Ecol. doi:10.1111/1365-2435.12244

  • Matic T (1983) Electrical inhibition in the retina of the butterfly Papilio. I. Four spectral types of photoreceptors. J Comp Physiol A 152:169–182

    Article  Google Scholar 

  • Menzel R, Backhaus W (1989) Color vision in honey bees: phenomena and physiological mechanisms. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 281–297

    Chapter  Google Scholar 

  • Menzel R, Hammer M, Muller U, Rosenboom H (1996) Behavioral, neural and cellular components underlying olfactory learning in the honeybee. J Phys Paris 90:395–398

    Article  CAS  Google Scholar 

  • Morehouse NI, Rutowski RL (2010) In the eyes of the beholders: female choice and avian predation risk associated with an exaggerated male butterfly color. Am Nat 176:768–784

    Article  PubMed  Google Scholar 

  • Neumeyer C (1980) Simultaneous color contrast in the honeybee. J Comp Physiol A 139:165–176

    Article  Google Scholar 

  • Neumeyer C (1981) Chromatic adaptation in honeybee: successive color contrast and color constancy. J Comp Physiol A 144:543–553

    Article  Google Scholar 

  • Neumeyer C (1986) Wavelength discrimination in the goldfish. J Comp Physiol A 158:203–213

    Article  Google Scholar 

  • Ogawa Y, Kinoshita M, Stavenga DG, Arikawa K (2013) Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate. J Exp Biol 216:1916–1923

    Article  CAS  PubMed  Google Scholar 

  • Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 28:6319–6332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu X, Arikawa K (2003) Polymorphism of red receptors: Sensitivity spectra of proximal photoreceptors in the small white butterfly, Pieris rapae crucivora. J Exp Biol 206:2787–2793

    Article  PubMed  Google Scholar 

  • Ribi WA (1981) The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurones. Cell Tissue Res 215:443–464

    Article  CAS  PubMed  Google Scholar 

  • Rossel S (1989) Polarization sensitivity in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 298–316

    Chapter  Google Scholar 

  • Scherer C, Kolb G (1987a) Behavioral experiments on the visual processing of color stimuli in Pieris brassicae L. (Lepidoptera). J Comp Physiol A 160:645–656

    Article  Google Scholar 

  • Scherer C, Kolb G (1987b) The influence of color stimuli on visually controlled behavior in Aglais urticae L. and Pararge aegeria L. (Lepidoptera). J Comp Physiol A 161:891–898

    Article  Google Scholar 

  • Shimohigashi M, Tominaga Y (1991) Identification of UV, green and red receptors, and their projection to lamina in the cabbage butterfly, Pieris rapae. Cell Tissue Res 263:49–59

    Article  Google Scholar 

  • Sison-Mangus MP, Briscoe AD, Zaccardi G, Knuttel H, Kelber A (2008) The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green. J Exp Biol 211:361–369

    Article  CAS  PubMed  Google Scholar 

  • Stavenga DG (2002) Reflections on colourful ommatidia of butterfly eyes. J Exp Biol 205:1077–1085

    PubMed  Google Scholar 

  • Stavenga DG, Arikawa K (2006) Evolution of color and vision of butterflies. Arthropod Struct Dev 35:307–318

    Article  PubMed  Google Scholar 

  • Stavenga DG, Kinoshita M, Yang EC, Arikawa K (2001) Retinal regionalization and heterogeneity of butterfly eyes. Naturwissenschaften 88:477–481

    Article  CAS  PubMed  Google Scholar 

  • Swihart SL (1970) The neural basis of colour vision in the butterfly, Papilio troilus. J Insect Physiol 16:1623–1636

    Article  Google Scholar 

  • Swihart CA (1971) Colour discrimination by the butterfly, Heliconius charitonius Linn. Anim Behav 19:156–164

    Article  Google Scholar 

  • Swihart SL, Gordon WC (1971) Red photoreceptor in butterflies. Nature 231:126–127

    Article  CAS  PubMed  Google Scholar 

  • Takemura SY, Arikawa K (2006) Ommatidial type-specific interphotoreceptor connections in the lamina of the swallowtail butterfly, Papilio xuthus. J Comp Neurol 494:663–672

    Article  PubMed  Google Scholar 

  • Takeuchi Y, Arikawa K, Kinoshita M (2006) Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus. J Exp Biol 209:2873–2879

    Article  PubMed  Google Scholar 

  • von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol A 80:439–472

    Article  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B 265:351–358

    Article  CAS  Google Scholar 

  • Warzecha AK, Egelhaaf M (1995) Visual pattern discrimination in a butterfly—a behavioral study on the australian lurcher, Yoma sabina. Naturwissenschaften 82:567–570

    CAS  Google Scholar 

  • Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354:227–229

    Article  Google Scholar 

  • Weiss MR (1997) Innate colour preferences and flexible colour learning in the pipevine swallowtail. Anim Behav 53:1043–1052

    Article  Google Scholar 

  • Werner A, Menzel R, Wehrhahn C (1988) Color constancy in the honeybee. J Neurosci 8:156–159

    CAS  PubMed  Google Scholar 

  • Yang E-C, Lin H-C, Hung Y-S (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925

    Article  CAS  PubMed  Google Scholar 

  • Zaccardi G, Kelber A, Sison-Mangus MP, Briscoe AD (2006) Color discrimination in the red range with only one long-wavelength sensitive opsin. J Exp Biol 209:1944–1955

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Finlay Stewart for critical reading the manuscript and also thank two anonymous reviewers for valuable suggestions to improve the presentation. This study was supported in part by Grants-in-aid from the JSPS (Japan Society for the Promotion of Science) to M. K. and K. A. All experiments were conducted according to the MEXT (Ministry of Education, Culture, Sports, Science and Technology of Japan) guidelines for proper conduct of animal experiments and related activities in academic research institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiyo Kinoshita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, M., Arikawa, K. Color and polarization vision in foraging Papilio . J Comp Physiol A 200, 513–526 (2014). https://doi.org/10.1007/s00359-014-0903-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0903-5

Keywords

Navigation