Skip to main content
Log in

The effect of ambient humidity on the foraging behavior of the hawkmoth Manduca sexta

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The foraging decisions of flower-visiting animals are contingent upon the need of an individual to meet both energetic and osmotic demands. Insects can alter their food preferences to prioritize one need over the other, depending on environmental conditions. In this study, preferences in nectar sugar concentrations (0, 12, 24 %) were tested in the hawkmoth Manduca sexta, in response to different levels of ambient humidity (20, 40, 60, and 80 % RH). Moths altered their foraging behavior when placed in low humidity environments by increasing the volume of nectar imbibed and by consuming more dilute nectar. When placed in high humidity environments the total volume imbibed decreased, because moths consumed less from dilute nectars (water and 12 % sucrose). Survivorship was higher with higher humidity. Daily foraging patterns changed with relative humidity (RH): moths maximized their nectar consumption earlier, at lower humidities. Although ambient humidity had an impact on foraging activity, activity levels and nectar preferences, total energy intake was not affected. These results show that foraging decisions made by M. sexta kept under different ambient RH levels allow individuals to meet their osmotic demands while maintaining a constant energy input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C:

Celsius

Cal:

Calories

dH2O:

Distilled water

g:

Gram

h:

Hour

kJ:

Kilo joule

kcal:

Kilo calories

L:D:

Light:dark

MV:

Mercury vapor

RH:

Relative humidity

V :

Volume

w/w:

Weight/weight

w/v:

Weight/volume

SRER:

Santa Rita Experimental Range

References

  • Adams DK, Comrie AC (1997) The North American monsoon. B Am Meteorol Soc 78:2197–2213

    Article  Google Scholar 

  • Alarcón R, Davidowitz G, Bronstein JL (2008) Nectar usage in a southern Arizona hawkmoth community. Ecol Entomol 33:503–509

    Article  Google Scholar 

  • Alarcón R, Riffell JA, Davidowitz G, Hildebrand JH, Bronstein JL (2010) Sex-dependent variation in the floral preferences of the hawkmoth Manduca sexta. Anim Behav 80:289–296

    Article  Google Scholar 

  • Baker HG, Baker I (1982) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki MH (ed) Biochemical aspects of evolutionary biology. University of Chicago Press, Chicago, pp 131–171

    Google Scholar 

  • Baker HG, Baker I (1983) Floral nectar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 117–141

    Google Scholar 

  • Barrass R (1970) The activity of Glossina morsitans Westwood (Diptera: Muscidae) in laboratory experiments. Proc R Entomol Soc A 45:114–122

    Google Scholar 

  • Bartholomew GA, Casey TM (1978) Oxygen consumption of moths during rest, pre-flight warm-up and flight in relation to body size and wing morphology. J Exp Biol 76:11–25

    Google Scholar 

  • Bell WJ (1990) Searching behavior patterns in insects. Annu Rev Entomol 35:447–467

    Article  Google Scholar 

  • Bell RA, Joachim FG (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Entomol Soc Am 69:365–373

    Google Scholar 

  • Beuchat CA, Calder WA, Braun EJ (1990) The integration of osmoregulation and energy balance in hummingbirds. Physiol Zool 63:1059–1081

    Google Scholar 

  • Bradley TJ (2009) Terrestrial animals. In: Bradley TJ (ed) Animal osmoregulation. Oxford University Press Inc., New York, pp 111–132

    Google Scholar 

  • Bradley TJ, Briscoe AD, Brady SG, Contreras HL, Danforth BN, Dudley R, Grimaldi D, Harrison JF, Kaiser JA, Merlin C, Reppert SM, Vanden Brooks JM, Yanoviak SP (2009) Episodes in insect evolution. Integr Comp Biol 49:509–606

    Article  Google Scholar 

  • Brusca RC, Moore W (2013) A natural history of the Santa Catalina Mountains, Arizona, with an introduction to the Madrean sky islands. Arizona-Sonora Desert Museum Press, Tucson

    Google Scholar 

  • Bursell E (1956) The effect of humidity on the activity of tsetse flies. J Exp Biol 34:42–51

    Google Scholar 

  • Butler CG (1940) The choice of drinking water by the honeybee. J Exp Biol 17:253–261

    CAS  Google Scholar 

  • Butler CG (1974) The world of the honeybee. Collins, London

    Google Scholar 

  • Chown SL (2002) Respiratory water loss in insects. Comp Biochem Physiol A 133:791–804

    Article  CAS  Google Scholar 

  • Collier KJ, Smith BJ (2010) Interactions of adult stoneflies (Plecoptera) with riparian zones I. Effects of air temperatures and humidity on longevity. Aquat Insect 22:275–284

    Article  Google Scholar 

  • Cooper PD, Schaffer WM, Buchmann SL (1985) Temperature regulation of honey bees (Apis mellifera) foraging in the Sonoran desert. J Exp Biol 114:1–15

    Google Scholar 

  • Corbet SA (1978) Bee visits and the nectar of Echium vulgare L. and Sinapis alba L. Ecol Entomol 3:25–37

    Article  Google Scholar 

  • Corbet SA, Delfosse ES (1984) Honeybees and the nectar of Echium plantagineum L. in southeastern Australia. Aus. J. Ecology 9:125–139

    Article  Google Scholar 

  • Corbet SA, Willmer PG, Beament JWL, Unwin DM, Prys-Jones OE (1979) Post-secretory determinants of sugar concentration in nectar. Plant Cell Environ 2:293–308

    Article  Google Scholar 

  • Davidowitz G (2002) Does precipitation variability increase from mesic to xeric biomes? Global Ecol Biogeogr 11:143–154

    Article  Google Scholar 

  • Davidowitz G, D’Amico LJ, Nijhout HF (2004) The effects of environmental variation on a mechanism that controls insect body size. Evol Ecol Res 6:49–62

    Google Scholar 

  • Davidowitz G, Nijhout HF, Roff DA (2012) Predicting the response to simultaneous selection: genetic architecture and physiological constraints. Evolution 66:2916–2928

    Article  PubMed  Google Scholar 

  • Douglas MWR, Maddox A, Howard K, Reyes S (1993) The Mexican monsoon. J Climate 6:1665–1677

    Article  Google Scholar 

  • Free JB (1977) The social organization of honey bees. Edward Arnold, London

    Google Scholar 

  • Goyret J, Pfaff M, Raguso RA, Kelber A (2008) Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth. Naturwissenschaften 95:569–576

    Google Scholar 

  • Gregory DP (1964) Hawkmoth pollination in the genus Oenothera. Aliso 5:385–419

    Google Scholar 

  • Haber WA, Frankie GW (1982) Pollination of Leuhea (Tiliaceae) in Costa Rican deciduous forest. Ecology 63:1740–1750

    Article  Google Scholar 

  • Haber WA, Frankie GW (1989) A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21:155–172

    Article  Google Scholar 

  • Hadley NF (1994) Water relations of terrestrial arthropods. Academic Press, San Diego

    Google Scholar 

  • Hamilton WJ, Seely MK (1976) Fog basking by the Namib Desert beetle, Onymacris unguicularis. Nature 262:284–285

    Article  Google Scholar 

  • Hassell MP, Southwood TRE (1978) Foraging strategies of insects. Ann Rev Ecol Syst 9:75–98

    Article  Google Scholar 

  • Heinrich B (1971) Temperature regulation of the sphinx moth, Manduca sexta. I. Flight energetics and body temperature during free and tethered flight. J Exp Biol 54:141–152

    PubMed  CAS  Google Scholar 

  • Heinrich B (1974) Thermoregulation in endothermic insects. Science 185:747–756

    Article  PubMed  CAS  Google Scholar 

  • Heinrich B, Casey TM (1973) Metabolic rate and endothermy in sphinx moths. J Comp Physiol 82:195–206

    Article  Google Scholar 

  • Heyneman AJ (1983) Optimal sugar concentrations of floral nectars—dependence on sugar intake efficiency and foraging costs. Oecologia 60:198–213

    Article  Google Scholar 

  • Hodges RW (1971) The Moths of America north of Mexico. Fascicle 21: Sphingidae. Wedge Entomological Research Foundation

  • Human KG, Weiss S, Weiss A, Sandler B, Gordon DM (1998) Effects of abiotic factors on the distribution and activity of the invasive argentine ant (Hymenoptera: Formicidae). Pop Ecol 27:822–833

    Google Scholar 

  • Joos B (1987) Carbohydrate use in the flight muscles of Manduca sexta during pre-flight warm-up. J Exp Biol 133:317–327

    Google Scholar 

  • Josens RB, Farina WM (1997) Selective choice of sucrose solution concentration by the hovering hawk moth Macroglossum stellatarum. J Insect Behav 10:651–657

    Article  Google Scholar 

  • Josens RB, Farina WM (2001) Nectar feeding by the hovering hawk moth Macroglossum stellatarum: intake rate as a function of viscosity and concentration of sucrose solutions. J Comp Physiol A 187:661–665

    Article  PubMed  CAS  Google Scholar 

  • Juillet JA (1964) Influence of weather on flight activity of parasitic hymenoptera. Can J Zool 42:1133–1141

    Article  Google Scholar 

  • Kaspari M, Weiser MD (2000) Ant activity along moisture gradients in a Neotropical Forest. Biotropica 32:703–711

    Article  Google Scholar 

  • Kelber A (2003) Sugar preferences and feeding strategies in the hawkmoth Macroglossum stellatarum. J Comp Physiol A 189:661–666

    Article  CAS  Google Scholar 

  • Liu Z, McNeil JN, Wu K (2011) Flight mill performance of the Lacewing Chrysoperla sinica (Neuroptera: Chrysopidae) as a function of age, temperature and relative humidity. J Econ Entomol 104:94–100

    Article  PubMed  Google Scholar 

  • Lopez-Calleja MV, Bozinovic F, Martínez del Rio C (1997) Effects of sugar concentration on hummingbird feeding and energy use. Comp Biochem Physiol A 118:1291–1299

    Article  Google Scholar 

  • Lotz CN, Nicolson SW (1999) Energy and water balance in the lesser double-collard sunbird (Nectarinia chalybea) feeding on different nectar concentrations. J Comp Physiol B 169:2010–2016

    Article  Google Scholar 

  • Martínez del Rio C, Schondube JE, McWhorter TJ, Herrera LG (2001) Intake response in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences and coevolutionary effects. Am Zool 41:902–915

    Article  Google Scholar 

  • Martins DJ, Johnson SD (2007) Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. Am J Bot 94:650–659

    Article  PubMed  Google Scholar 

  • Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim JD, Brooks TB, Mittermeier CG, Lamoreux JL, Fonseca GAB (2004) Hotspots revisited: earth’s biologically richest and most endangered ecoregions. CEMEX, Mexico City

    Google Scholar 

  • Nicolson SW (1994) Eucalyptus nectar: production, availability, composition and osmotic consequences for the larva of the eucalyptus nectar fly, Drosophila flavohirta. S Afr J Sci 90:59–75

    Google Scholar 

  • Nicolson SW (1998) The importance of osmosis in nectar secretion and its consumption by insects. Am Zool 38:418–425

    Google Scholar 

  • Nicolson SW, Thornburg RW (2007) Nectar chemistry. In: Nicolson SW, Nepi M, Pacini W (eds) Nectaries and nectar. Springer, Dordrecht, pp 215–264

    Chapter  Google Scholar 

  • O’Brien D (1999) Fuel use in flight and its dependence on nectar feeding in the hawkmoth Amphion floridensis. J Exp Biol 202:441–451

    PubMed  Google Scholar 

  • O’Donnell MJ (1977) Site of water vapor absorption in the desert cockroach, Arenivaga investigata. PNAS USA 74:1757–1760

    Article  PubMed  Google Scholar 

  • Ohguchi O, Aoki K (1983) Effects of colony need for water on optimal food choice in honey-bees. Behav Ecol Sociobiol 12:77–84

    Article  Google Scholar 

  • Pyke GH, Waser NM (1981) The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 12:260–270

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria). Available at: http://www.R-project.org

  • Raguso RA, Willis MA (2002) Synergy between visual and olfactory cues in nectar feeding by naïve hawkmoths, Manduca sexta. Anim Behav 64:685–695

    Article  Google Scholar 

  • Raguso RA, Willis MA (2003) Hawkmoth pollination in Arizona’s Sonoran Desert: behavioral responses to floral traits. In: Boggs CL, Watt WB, Ehrlich PR (eds) Evolution and ecology taking flight: butterflies as model systems. University of Chicago Press, Chicago, pp 43–65

    Google Scholar 

  • Raguso RA, Henzel C, Buchmann SL, Nabhan GP (2003) Trumpet flowers of the Sonoran desert: floral biology of Peniocereus cacti and sacred Datura. Int J Plant Sci 164:877–892

    Article  CAS  Google Scholar 

  • Raguso RA, LeClere AR, Schlumpberger BO (2005) Sensory flexibility in hawkmoth foraging behavior: lessons from Manduca sexta and other species. Chem Senses 30:295–296

    Article  Google Scholar 

  • Ramaswamy SB (1988) Host finding by moths: sensory modalities and behaviours. J Insect Physiol 34:235–249

    Article  Google Scholar 

  • Riffell JA, Alarcón R, Abrell L, Davidowitz G, Bronstein JL, Hildebrand JG (2008) Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions. PNAS 105:3404–3409

    Article  PubMed  CAS  Google Scholar 

  • Simmons AM, Mahroof RM (2011) Response of Bemisia tabaci (Hemiptera: Aleyrodidae) to vapor pressure deficit: Oviposition, immature survival and body size. Ann Entomol Soc Am 104:928–934

    Article  Google Scholar 

  • Suarez RK, Lighton JRB, Moyes CD, Brown GS, Gass CL, Hochachka PW (1990) Fuel selection in rufous hummingbirds: ecological implications of metabolic biochemistry. Proc Natl Acad Sci USA 87:9207–9210

    Article  PubMed  CAS  Google Scholar 

  • Therneau T (2011) survival: Survival analysis, including penalised likelihood. R package version 2.36-9. Available at: http://cran.r-project.org/web/packages/survival/index.html (original Splus- > R port by Thomas Lumley)

  • Tuttle JP (2007) The hawk moths of North America: a natural history study of the Sphingidae of the United States and Canada. Wedge Entomological Research Foundation

  • Unland HE, Houser PR, Shuttleworth WJ, Yang Z (1996) Surface flux measurements and modeling at a semi-arid Sonoran Desert site. Agr Forest Meteorol 82:119–153

    Article  Google Scholar 

  • Watson AW, Holle R, Lopez RE (1994) Cloud to ground lightning and upper-air patterns during bursts and breaks in the southwest monsoon. Mon Weather Rev 122:1716–1725

    Article  Google Scholar 

  • Watt WB, Hoch PC, Mills SG (1974) Nectar resource use by Colias butterflies. Oecologica 14:353–374

    Article  Google Scholar 

  • Willmer PG (1986) Foraging patterns and water balance: problems of optimization for a xerophilic bee, Chalicodoma sicula. J Animal Ecol 55:941–962

    Article  Google Scholar 

  • Willmer PG (1988) The role of insect water balance in pollination ecology: Xylocopa and Calotropis. Oecologia 76:430–438

    Google Scholar 

  • Yee-Fatt H, Chow-Yang L (2010) Effects of temperature and humidity on the survival and water loss of Cimex hemipterus (Hemiptera: Cimicidae). J Med Entomol 47:987–995

    Article  Google Scholar 

  • Zhang Y, Wang L, Wu K, Wyckhuys KAG, Heimpel GE (2008) Flight performance of the soybean aphid, Aphis glycines (Hemiptera: Aphididae) under different temperature and humidity regimes. Physiol Ecol 37:301–306

    Google Scholar 

  • Ziegler R (1991) Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J Comp Physiol B 161:125–131

    Article  PubMed  CAS  Google Scholar 

  • Ziegler R, Schulz M (1986a) Regulation of lipid metabolism during flight in Manduca sexta. J Insect Physiol 32:903–908

    Article  CAS  Google Scholar 

  • Ziegler R, Schulz M (1986b) Regulation of carbohydrate metabolism during flight in Manduca sexta. J Insect Physiol 32:997–1001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jennifer Stevens and Scott Janowski for their assistance in the laboratory experiments. Rainee Kaczorowski collected valuable pilot data on RH and survivorship. Jennifer Graber, Jenny Barker, Greg Barron-Gafford, Erick Chen, Benjamin Collins, Ilan Davidowitz, Sarah Diamond, Jenny Graber, Bryan Helm, Brianna Horvath, Alice Levine, Jack Lin, Kelly Mackay, Connie Meyers, Hillary Miller, Jim Pearson, Virginia Pham, Kristen Potter, Benjamin Pri-Tal, Rebecca Ruppel, Valerie Rychka, Elliot Saperstein, Ratchanee Sananmuang, Karla Scott, David Sung, and Maria Williams provided invaluable assistance in blacklighting. This study was supported by National Science Foundation (USA) grants DEB-0316205 to JLB and GD, IOS-0923180 to GD and IOS-0923765 to RAR and JG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidy L. Contreras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, H.L., Goyret, J., von Arx, M. et al. The effect of ambient humidity on the foraging behavior of the hawkmoth Manduca sexta . J Comp Physiol A 199, 1053–1063 (2013). https://doi.org/10.1007/s00359-013-0829-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0829-3

Keywords

Navigation