Skip to main content
Log in

A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: functional aspects revealed by glutamate stimulation

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The cyclic enrichment of behavioral repertoires is a common event in seasonal breeders. Breeding males Brachyhypopomus gauderio produce electric organ discharge (EOD) rate modulations called chirps while females respond with interruptions. The electromotor system is commanded by a pacemaker nucleus (PN) which sets the basal rate and produces the rate modulations. We focused on identifying functional, seasonal and sexual differences in this nucleus in correlation to these differences in behavior. The in vivo response to glutamate injection in the PN was seasonal, sexually dimorphic and site specific. Non-breeding adults and breeding females injected in dorsal and ventral sites generated EOD rate increases and interruptions, respectively. Reproductive males added a conspicuous communication signal to this repertoire. They chirped repetitively when we injected glutamate in a very restricted area of the ventral–rostral nucleus, surprisingly one with a low number of relay cell somata. This study shows that the PN is functionally organized in regions in a caudal–rostral axis, besides the previously documented dorsal–ventral division. Functional regions are revealed by seasonal changes that annually provide this nucleus with the cellular mechanisms that allow the bursting activity underlying chirp production, only in males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EOD:

Electric organ discharge

PN:

Pacemaker nucleus

CP/PPNc:

Diencepahlic pre-pacemaker chirp region

CP/PPNi:

Diencepahlic pre-pacemaker inhibitory region

CP/PPNg:

Diencepahlic pre-pacemaker gradual rises region

sPPN:

Sublemnical pre-pacemaker

References

  • Bass A (2008) Steroid-dependent plasticity of vocal motor systems: novel insights from teleost fish. Brain Res Rev 57:299–308

    Article  CAS  PubMed  Google Scholar 

  • Bass A, Baker R (1990) Sexual dimorphisms in the vocal control system of a teleost fish: morphology of physiologically identified neurons. J Neurobiol 21:1155–1168

    Article  CAS  PubMed  Google Scholar 

  • Bass AH, Baker R (1997) Phenotypic specification of hindbrain rhombomeres and the origins of rhythmic circuits in vertebrates. Brain Behav Evol 50:3–16

    Article  PubMed  Google Scholar 

  • Bass A, McKibben J (2003) Neural mechanisms and behaviors for acoustic communication in teleost fish. Progr Neurobiol 69:1–26

    Article  Google Scholar 

  • Bass A, Remage-Healey L (2008) Central pattern generators for social vocalization: androgen-dependent neurophysiological mechanisms. Horm Behav 53:659–672

    Article  CAS  PubMed  Google Scholar 

  • Bass AH, Zakon HH (2005) Sonic and electric fish: at the crossroads of neuroethology and behavioral neuroendocrinology. Horm Behav 48:360–372

    Article  CAS  PubMed  Google Scholar 

  • Bennett MV, Pappas GD, Gimenez M, Nakajima Y (1967) Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J Neurophysiol 30:236–300

    CAS  PubMed  Google Scholar 

  • Capurro A, Longtin A, Bagarinao E, Sato S, Macadar O, Pakdaman K (2001) Variability of the electric organ discharge interval duration in resting Gymnotus carapo. Biol Cybern 84:309–321

    Article  CAS  PubMed  Google Scholar 

  • Caputi AA, Silva A, Macadar O (1998) The EOD of Brachyhypopomus pinnicaudatus: the effect of environmental variables on waveform generation. Brain Behav Evol 52:148–158

    Article  CAS  PubMed  Google Scholar 

  • Caputi AA, Carlson BA, Macadar O (2005) Electric organs and their control. In: Bullock TH, Hopkins CD, Fay R, Popper N (eds) Electroreception. Springer, New York, pp 410–451

    Chapter  Google Scholar 

  • Diano S, Naftolin F, Tamas L, Horvath L (1997) Gonadal steroids target AMPA glutamate receptor-containing neurons in the rat hypothalamus, septum and amygdala: a morphological and biochemical study. Endocrinology 138:778–789

    Article  CAS  PubMed  Google Scholar 

  • Dulka JG, Maler L (1994) Testosterone modulates female chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 174:331–343

    Article  CAS  Google Scholar 

  • Dulka JG, Maler L, Ellis W (1995) Androgen-induced changes in electrocommunicatory behavior are correlated with changes in substance P-like immunoreactivity in the brain of the electric fish Apteronotus leptorhynchus. J Neurosci 15:1879–1890

    CAS  PubMed  Google Scholar 

  • Dunlap K (2002) Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Horm Behav 41:187–194

    Article  CAS  PubMed  Google Scholar 

  • Dunlap K, Larkins-Ford J (2003a) Production of aggressive electrocommunication signals to progressively realistic social stimuli in male Apteronotus leptorhynchus. Ethology 109:243–258

    Article  Google Scholar 

  • Dunlap KD, Larkins-Ford J (2003b) Diversity in the structure of electrocommunication signals within a genus of electric fish, Apteronotus. J Comp Physiol A 189:153–161

    CAS  Google Scholar 

  • Dye J, Meyers J (1986) Central control of the electric organ discharge in weakly electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 71–102

    Google Scholar 

  • Dye JC, Heiligenberg W, Keller CH, Kawasaki M (1989) Different classes of glutamate receptors mediate distinct behaviors in a single brainstem nucleus. Proc Natl Acad Sci USA 86:8993–8997

    Article  CAS  PubMed  Google Scholar 

  • Elekes K, Szabo T (1981) Comparative synaptology of the pacemaker (command) nucleus of the brain of weakly electric fish (Gymnotidae). In: Szabo T, Czéh G (eds) Sensory physiology of aquatic lower vertebrates. Akadémiai Kiadó, Budapest, pp 107–128

  • Ellis DB, Szabo T (1980) Identification of different cells types in the command (pacemaker) nucleus of several gymnotiform species by retrograde transport of horseradish peroxidase. Neuroscience 5:1917–1929

    Article  CAS  PubMed  Google Scholar 

  • Engler G, Zupanc GKH (2001) Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 187:747–756

    Article  CAS  PubMed  Google Scholar 

  • Falconi A, Lorenzo D, Curti S, Morales F, Borde M (1997) Mauthner cell-evoked synaptic actions on pacemaker medullary neurons of a weakly electric fish. J Comp Physiol A 181:143–151

    Article  Google Scholar 

  • Ferrari M, McAnelly M, Zakon H (1995) Individual variation in and androgen-modulation of the sodium current in electric organ. Neuroscience 15:4023–4032

    CAS  PubMed  Google Scholar 

  • Giora JL, Malabarba LR (2009) Brachyhypopomus gauderio, new species, a new example of underestimated species diversity of electric fishes in the southern South America (Gymnotiformes: Hypopomidae). Zootaxa 2093:60–68

    Google Scholar 

  • Hagedorn M (1988) Ecology and behavior of a pulse type electric fish Hypopomus occidentalis (Gymnotiformes, Hypopomidae) in a fresh-water stream in Panama. Copeia 2:324–335

    Article  Google Scholar 

  • Hagedorn M, Heiligenberg W (1985) Court and spark: electric signals in the courtship and mating of gimnotoid fish. Anim Behav 33:254–265

    Article  Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. MIT Press, London

    Google Scholar 

  • Heiligenberg W, Finger T, Matsubara J, Carr C (1981) Input to the medullary pacemaker nucleus in the weakly electric fish, Eigenmannia (Sternopygidae, Gymnotiformes). Brain Res 211:418–423

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD (1972) Sex differences in electric signaling in an electric fish. Science 176:1035–1037

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD (1974a) Electric communication: functions in the social behavior of Eigenmannia virescens. Behaviour 50:270–305

    Article  Google Scholar 

  • Hopkins CD (1974b) Electric communication in the reproductive behavior of Sternopygus macrurus (Gymnotoidei). Z Tierpsychol 35:518–535

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD (1988) Neuroethology of electric communication. Annu Rev Neurosci 11:497–535

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD, Comfort NC, Bastian J, Bass AH (1990) Functional analysis of sexual dimorphism in an electric fish, Hypopomus pinnicaudatus, order Gymnotiformes. Brain Behav Evol 35:350–367

    Article  CAS  PubMed  Google Scholar 

  • Hupé GJ, Lewis JE (2008) Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus. J Exp Biol 211:1657–1667

    Article  PubMed  Google Scholar 

  • Juranek J, Metzner W (1997) Cellular characterization of synaptic modulations of a neuronal oscillator in electric fish. J Comp Physiol A 181:393–414

    Article  Google Scholar 

  • Juranek J, Metzner W (1998) Segregation of behavior-specific synaptic inputs to a vertebrate neuronal oscillator. J Neurosci 18:9010–9019

    CAS  PubMed  Google Scholar 

  • Kawasaki M, Heiligenberg W (1988) Individual prepacemaker neurons can modulate the pacemaker cycle of the gymnotiform electric fish, Eigenmannia. J Comp Physiol A 162:13–21

    Google Scholar 

  • Kawasaki M, Heiligenberg W (1989) Distinct mechanisms of modulation in a neuronal oscillator generate different signals in the electric fish Hypopomus. J Comp Physiol A 165:731–741

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki M, Heiligenberg W (1990) Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish. J Neurosci 10:3896–3904

    CAS  PubMed  Google Scholar 

  • Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131

    Article  CAS  PubMed  Google Scholar 

  • Keller CH, Kawasaki M, Heiligenberg W (1991) The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus. J Comp Physiol A 169:441–450

    Article  CAS  PubMed  Google Scholar 

  • Kennedy G, Heiligenberg W (1994) Ultrastructural evidence of GABA-ergic inhibition and glutamatergic excitation in the pacemaker nucleus of the gymnotiform electric fish, Hypopomus. J Comp Physiol A 174:267–280

    Article  CAS  PubMed  Google Scholar 

  • Kolodziejski J, Nelson B, Smith T (2005) Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish. J Neurobiol 62:299–315

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo D, Silva A, Macadar O (2006) Electrocommunication in gymnotiformes: jamming avoidance and social signals during courtship. In Ladich F, Collin S, Moller P, Kapoor B (eds) Communication in fishes. Science Publishers, Enfield, pp 753–779

  • Maler L, Ellis W (1987) Inter-male aggressive signals in weakly electric fish are modulated by monoamines. Behav Brain Res 25:75–81

    Article  CAS  PubMed  Google Scholar 

  • McAnelly ML, Zakon HH (2000) Coregulation of voltage-dependent kinetics of Na+ and K+ currents in electric organ. J Neurosci 20:3408–3414

    CAS  PubMed  Google Scholar 

  • Metzner W (1993) The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways. J Neurosci 13:1862–1878

    CAS  PubMed  Google Scholar 

  • Meyer J (1983) Steroid influences upon the discharge frequencies of a weakly electric fish. J Comp Physiol A 153:29–37

    Article  CAS  Google Scholar 

  • Mills A, Zakon HH (1987) Coordination of EOD frequency and pulse duration in a weakly electric wave fish: the influence of androgens. J Comp Physiol A 161:417–430

    Article  Google Scholar 

  • Mills AC, Zakon HH (1991) Chronic androgen treatment increases action potential duration in the electric organ of Sternopygus. J Neurosci 11:2349–2361

    CAS  PubMed  Google Scholar 

  • Moortgat KT, Keller CH, Bullock TH, Sejnowski TJ (1998) Submicrosecond pacemaker precision is behaviorally modulated: the gymnotiform electromotor pathway. Proc Natl Acad Sci USA 95:4684–4689

    Article  CAS  PubMed  Google Scholar 

  • Moortgat KT, Bullock TH, Sejnowski TJ (2000) Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences. J Neurophysiol 83:971–983

    CAS  PubMed  Google Scholar 

  • Perrone R, Macadar O, Silva A (2009) Social electric signals in freely moving dyads of Brachyhypopomus pinnicaudatus. J Comp Physiol A 195:501–514

    Article  Google Scholar 

  • Pouso P, Quintana L, Bolatto C, Silva AC (2010) Brain androgen receptor expression correlates with seasonal changes in the behavior of a weakly electric fish, Brachyhypopomus gauderio. Horm Behav (in press)

  • Quintana L, Silva A, Berois N, Macadar O (2004) Temperature induces gonadal maturation and affects electrophysiological sexual maturity indicators, in Brachyhypopomus pinnicaudatus from the temperate climate. J Exp Biol 207:1843–1853

    Article  PubMed  Google Scholar 

  • Quintana L, Sierra F, Silva A, Macadar O (2010) A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: anatomical and electrophysiological aspects. J Comp Physiol A (in press)

  • Schaefer J, Zakon HH (1996) Opposing actions of androgen and estrogen on in vitro firing frequency of neuronal oscillators in the electromotor system. J Neurosci 16:2860–2868

    CAS  PubMed  Google Scholar 

  • Silva A, Quintana L, Galeano M, Errandonea P, Macadar O (1999) Water temperature sensitivity of EOD waveform in Brachyhypopomus pinnicaudatus. J Comp Physiol A 185:187–197

    Article  Google Scholar 

  • Silva A, Quintana L, Galeano M, Errandonea P (2003) Biogeography and breeding in Gymnotiformes from Uruguay. Environ Biol Fish 66:329–338

    Article  Google Scholar 

  • Silva A, Perrone R, Macadar O (2007) Environmental, seasonal, and social modulations of basal activity in a weakly electric fish. Physiol Behav 90:525–536

    Google Scholar 

  • Silva A, Quintana L, Perrone R, Sierra F (2008) Sexual and seasonal plasticity in the emission of social electric signals. Behavioral approach and neural bases. J Physiol 102:272–278

    Google Scholar 

  • Spiro JE (1997) Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors. J Neurophysiol 78:835–847

    CAS  PubMed  Google Scholar 

  • Spiro JE, Brose N, Heinemann SF, Heiligenberg W (1994) Immunolocalization of NMDA receptors in the central nervous system of weakly electric fish: functional implications for the modulation of a neuronal oscillator. J Neurosci 14:6289–6299

    CAS  PubMed  Google Scholar 

  • Stoddard PK (2002) Electric signals: predation, sex, and environmental constraints. Adv Stud Behav 31:201–242

    Article  Google Scholar 

  • Telgkamp P, Combs N, Smith GT (2007) Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance. Dev Neurobiol 67:339–354

    Article  CAS  PubMed  Google Scholar 

  • Tobin V, Canny B (1998) The regulation of gonadotropin-releasing hormone-induced calcium signals in male rat gonadotrophs by testosterone is mediated by dihydrotestosterone. Endocrinology 139:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Tobin V, Millar R, Canny B (1997) Testosterone acts directly at the pituitary to regulate gonadotropin-releasing hormone-induced calcium signals in male rat gonadotropes. Endocrinology 138:3314–3319

    Article  CAS  PubMed  Google Scholar 

  • Weld M, Maler L (1992) Substance P-like immunoreactivity in the brain of the gymnotiform fish Apteronotus leptorhynchus: presence of sex differences. J Chem Neuroanat 5:107–129

    Article  CAS  PubMed  Google Scholar 

  • Zakon H, McAnelly L, Smith GT, Dunlap K, Lopreato G, Oestreich J, Few WP (1999) Plasticity of the electric organ discharge: implications for the regulation of ionic currents. J Exp Biol 202:1409–1416

    CAS  PubMed  Google Scholar 

  • Zhou M, Smith GT (2006) Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii. J Exp Biol 209:4809–4818

    Article  PubMed  Google Scholar 

  • Zornik E, Yamaguchi A (2008) Sexually differentiated central pattern generators in Xenopus laevis. Trends Neurosci 31:296–302

    Article  CAS  PubMed  Google Scholar 

  • Zupanc GKH, Heiligenberg W (1989) Sexual maturity-dependent changes in neuronal morphology in the prepacemaker nucleus of adult weakly electric knifefish, Eigenmannia. J Neurosci 9:3816–3827

    CAS  PubMed  Google Scholar 

  • Zupanc GKH, Heiligenberg W (1992) The structure of the diencephalic prepacemaker nucleus revisited: light microscopic and ultrastructural studies. J Comp Neurol 323:558–569

    Article  CAS  PubMed  Google Scholar 

  • Zupanc GKH, Sîrbulescu RF, Nichols A, Ilies I (2006) Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 192:159–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Kent Dunlap and Phil Stoddard for their generous revision and suggestions to our manuscript. Special thanks to Catherine Carr for her thoughtful comments. We are very grateful to Rossana Perrone who very kindly performed the behavioral experiments and participated in all field trips. This research was financed by PDT 043 and PEDECIBA. All procedures were done in accordance with the guidelines of the local ethical committee (Comisión Honoraria de Experimentación Animal, CHEA, and Universidad de la República, Uruguay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Quintana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintana, L., Sierra, F., Silva, A. et al. A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: functional aspects revealed by glutamate stimulation. J Comp Physiol A 197, 211–225 (2011). https://doi.org/10.1007/s00359-010-0603-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0603-8

Keywords

Navigation