Skip to main content
Log in

Phylogenetic and individual variation in gastropod central pattern generators

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Gastropod molluscs provide a unique opportunity to explore the neural basis of rhythmic behaviors because of the accessibility of their nervous systems and the number of species that have been examined. Detailed comparisons of the central pattern generators (CPGs) underlying rhythmic feeding and swimming behaviors highlight the presence and effects of variation in neural circuits both across and within species. The feeding motor pattern of the snail, Lymnaea, is stereotyped, whereas the feeding motor pattern in the sea hare, Aplysia, is variable. However, the Aplysia motor pattern is regularized with operant conditioning or by mimicking learning using the dynamic clamp to change properties of CPG neurons. Swimming evolved repeatedly in marine gastropods. Distinct neural mechanisms underlie dissimilar forms of swimming, with homologous neurons playing different roles. However, even similar swimming behaviors in different species can be produced by distinct neural mechanisms, resulting from different synaptic connectivity of homologous neurons. Within a species, there can be variation in the strength and even valence of synapses, which does not have functional relevance under normal conditions, but can cause some individuals to be more susceptible to lesion of the circuit. This inter- and intra-species variation provides novel insights into CPG function and plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arshavsky YI, Deliagina TG, Orlovsky GN, Panchin YV, Popova LB, Sadreyev RI (1998) Analysis of the central pattern generator for swimming in the mollusk Clione. Ann N Y Acad Sci 860:51–69

    Article  CAS  PubMed  Google Scholar 

  • Baxter DA, Byrne JH (2006) Feeding behavior of Aplysia: a model system for comparing cellular mechanisms of classical and operant conditioning. Learn Mem 13:669–680

    Article  CAS  PubMed  Google Scholar 

  • Bedecarrats A, Cornet C, Simmers J, Nargeot R (2013) Implication of dopaminergic modulation in operant reward learning and the induction of compulsive-like feeding behavior in Aplysia. Learn Mem 20:318–327

    Article  CAS  PubMed  Google Scholar 

  • Beer RD, Chiel HJ, Gallagher JC (1999) Evolution and analysis of model CPGs for walking: II. General principles and individual variability. J Computational Neurosci 7:119–147

    Article  CAS  Google Scholar 

  • Benjamin PR (1983) Gastropod feeding: behavioural and neural analysis of a complex multicomponent system. In: Roberts A, Roberts BL (eds) Neural origin of rhythmic movements. Cambridge University Press, Cambridge, pp 159–193

    Google Scholar 

  • Benjamin PR, Kemenes G (2010) Lymnaea leaning and memory. Scholarpedia 5:4247

    Article  Google Scholar 

  • Benjamin PR, Staras K, Kemenes G (2000) A systems approach to the cellular analysis of associative learning in the pond snail Lymnaea. Learn Mem 7:124–131

    Article  CAS  PubMed  Google Scholar 

  • Benjamin PR, Kemenes G, Kemenes I (2008) Non-synaptic neuronal mechanisms of learning and memory in gastropod molluscs. Front Biosci 13:4051–4057

    Article  PubMed  Google Scholar 

  • Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Learning optimal adaptation strategies in unpredictable motor tasks. J Neurosci 29:6472–6478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brembs B (2014) Aplysia operant conditioning. Scholarpedia 9:4097

    Article  Google Scholar 

  • Brembs B, Lorenzetti FD, Reyes FD, Baxter DA, Byrne JH (2002) Operant reward learning in Aplysia: neuronal correlates and mechanisms. Science 296:1706–1709

    Article  CAS  PubMed  Google Scholar 

  • Brezina V, Proekt A, Weiss KR (2006) Cycle-to-cycle variability as an optimal behavioral strategy. Neurocomputing 69:1120–1124

    Article  PubMed Central  PubMed  Google Scholar 

  • Calin-Jageman RJ, Tunstall MJ, Mensh BD, Katz PS, Frost WN (2007) Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol 98:2382–2398

    Article  PubMed  Google Scholar 

  • Chiel HJ (2007) Aplysia feeding biomechanics. Scholarpedia 2:4165

    Article  Google Scholar 

  • Croll RP (1987) Identified neurons and cellular homologies. In: Ali MA (ed) Nervous systems in invertebrates. Plenum Publishing Corp, New York, pp 41–59

    Chapter  Google Scholar 

  • Cropper EC, Evans CG, Hurwitz I, Jing J, Proekt A, Romero A, Rosen SC (2004) Feeding neural networks in the mollusc Aplysia. Neurosignals 13:70–86

    Article  CAS  PubMed  Google Scholar 

  • Cullins MJ, Shaw KM, Gill JP, Chiel HJ (2015) Motor neuronal activity varies least among individuals when it matters most for behavior. J Neurophysiol 113:981–1000

    Article  PubMed  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492–498

    Article  CAS  PubMed  Google Scholar 

  • Duda TF Jr, Palumbi SR (2004) Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus conus. Proc R Soc Lond B Biol Sci 271:1165–1174

    Article  CAS  Google Scholar 

  • Eisthen HL, Nishikawa KC (2002) Convergence: obstacle or opportunity? Brain Behav Evol 59:235–239

    Article  PubMed  Google Scholar 

  • Elliott CJH, Susswein AJ (2002) Comparative neuroethology of feeding control in molluscs. J Exp Biol 205:877–896

    CAS  PubMed  Google Scholar 

  • Farmer WM (1970) Swimming gastropods (Opisthobranchia and Prosobranchia). The Veliger 13:73–89

    Google Scholar 

  • Friesen WO (1994) Reciprocal inhibition: A mechanism underlying oscillatory animal movements. Neurosci Biobehav Rev 18:547–553

    Article  CAS  PubMed  Google Scholar 

  • Garst-Orozco J, Babadi B, Olveczky BP (2014) A neural circuit mechanism for regulating vocal variability during song learning in zebra finches. eLife 4:e03697

    Article  PubMed  Google Scholar 

  • Getting PA (1989a) A network oscillator underlying swimming in Tritonia. In: Jacklet JW (ed) Neuronal and cellular oscillators. Marcel Dekker Inc, New York, pp 215–236

    Google Scholar 

  • Getting PA (1989b) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204

    Article  CAS  PubMed  Google Scholar 

  • Gillette R (2014) Pleurobranchaea. Scholarpedia 9:3942

    Article  Google Scholar 

  • Goebbeler K, Klussmann-Kolb A (2011) Molecular phylogeny of the Euthyneura (Mollusca, Gastropoda) with special focus on Opisthobranchia as a framework for reconstruction of evolution of diet. Thalassas 27:121–154

    Google Scholar 

  • Harris-Warrick RM (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21:685–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hill ES, Vasireddi SK, Bruno AM, Wang J, Frost WN (2012) Variable neuronal participation in stereotypic motor programs. PLoS One 7:e40579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hurst A (1968) The feeding mechanism and behavior of the opisthobranch Melibe leonina. Symp Zool Soc Lond 22:155–166

    Google Scholar 

  • Jansen RF, Pieneman AW, Ter Maat A (1999) Pattern generation in the buccal system of freely behaving Lymnaea stagnalis. J Neurophysiol 82:3378–3391

    CAS  PubMed  Google Scholar 

  • Jing J, Gillette R (1999) Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica. J Neurophysiol 81:654–667

    CAS  PubMed  Google Scholar 

  • Katz PS (2009) Tritonia swim network. Scholarpedia 4:3638

    Article  Google Scholar 

  • Katz PS, Hooper SL (2007) Invertebrate central pattern generators. In: North G, Greenspan RJ (eds) Invertebrate neuroscience. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 251–280

    Google Scholar 

  • Katz PS, Getting PA, Frost WN (1994) Dynamic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. Nature 367:729–731

    Article  CAS  PubMed  Google Scholar 

  • Katz PS, Fickbohm DJ, Lynn-Bullock CP (2001) Evidence that the swim central pattern generator of Tritonia arose from a non-rhythmic neuromodulatory arousal system: implications for the evolution of specialized behavior. Am Zool 41:962–975

    Article  Google Scholar 

  • Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature:452–456

  • Kocot KM, Halanych KM, Krug PJ (2013) Phylogenomics supports Panpulmonata: Opisthobranch paraphyly and key evolutionary steps in a major radiation of gastropod molluscs. Mol Phylogenet Evol 69:764–771

    Article  PubMed  Google Scholar 

  • Krogh A (1929) The progress of physiology. Amer J Physiol 90:243–251

    Google Scholar 

  • Lechner HA, Baxter DA, Byrne JH (2000) Classical conditioning of feeding in Aplysia: I. Behavioral analysis. J Neurosci 20:3369–3376

    CAS  PubMed  Google Scholar 

  • Lillvis JL, Katz PS (2013) Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior. J Neurosci 33:2709–2717

    Article  CAS  PubMed  Google Scholar 

  • Lillvis JL, Gunaratne CA, Katz PS (2012) Neurochemical and neuroanatomical identification of central pattern generator neuron homologues in Nudipleura molluscs. PLoS One 7:e31737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenzetti FD, Mozzachiodi R, Baxter DA, Byrne JH (2005) Classical and operant conditioning differentially modify the intrinsic properties of an identified neuron. Nat Neurosci 9:17–19

    Article  PubMed  Google Scholar 

  • Lukowiak K, Syed N (1999) Learning, memory and a respiratory central pattern generator. Comp Biochem Physiol A 124:265–274

    Article  CAS  Google Scholar 

  • Lukowiak K, Ringseis E, Spencer G, Wildering W, Syed N (1996) Operant conditioning of aerial respiratory behaviour in Lymnaea stagnalis. J Exp Biol 199:683–691

    PubMed  Google Scholar 

  • Lum CS, Zhurov Y, Cropper EC, Weiss KR, Brezina V (2005) Variability of swallowing performance in intact, freely feeding Aplysia. J Neurophysiol 94:2427–2446

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma M, Koester J (1996) The role of K+ currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic-clamp analysis. J Neurosci 16:4089–4101

    CAS  PubMed  Google Scholar 

  • Magoski NS, Bulloch AG (1999) Dopamine activates two different receptors to produce variability in sign at an identified synapse. J Neurophysiol 81:1330–1340

    CAS  PubMed  Google Scholar 

  • Magoski NS, Bulloch AGM (2000) Stability and variability of synapses in the adult molluskan CNS. J Neurobiol 42:410–423

    Article  CAS  PubMed  Google Scholar 

  • Malyshev AY, Norekian TP (2002) Phase-locked coordination between two rhythmically active feeding structures in the mollusk Clione limacina. I. Motor neurons. J Neurophysiol 87:2996–3005

    PubMed  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Goeritz ML, Otopalik AG (2014) Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr Opin Neurobiol 31C:156–163

    Google Scholar 

  • Marder E, Haddad SA, Goeritz ML, Rosenbaum P, Kispersky T (2015) How can motor systems retain performance over a wide temperature range? Lessons from the crustacean stomatogastric nervous system. J Comp Physiol A. doi:10.1007/s00359-014-0975-2 [Epub ahead of print]

  • McClellan AD, Brown GD, Getting PA (1994) Modulation of swimming in Tritonia: excitatory and inhibitory effects of serotonin. J Comp Physiol A 174:257–266

    Article  CAS  PubMed  Google Scholar 

  • McComb C, Rosenegger D, Varshney N, Kwok HY, Lukowiak K (2005) Operant conditioning of an in vitro CNS-pneumostome preparation of Lymnaea. Neurobiol Learn Mem 84:9–24

    Article  PubMed  Google Scholar 

  • Moroz LL (2009) On the independent origins of complex brains and neurons. Brain Behav Evol 74:177–190

    Article  PubMed Central  PubMed  Google Scholar 

  • Nargeot R, Simmers J (2010) Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci 68:803–816

    Article  PubMed  Google Scholar 

  • Nargeot R, Simmers J (2012) Functional organization and adaptability of a decision-making network in Aplysia. Front Neurosci 6:113. doi:10.3389/fnins.2012.00113

  • Nargeot R, Baxter DA, Byrne JH (1999) In vitro analog of operant conditioning in Aplysia. II. Modifications of the functional dynamics of an identified neuron contribute to motor pattern selection. J Neurosci 19:2261–2272

    CAS  PubMed  Google Scholar 

  • Neustadter DM, Herman RL, Drushel RF, Chestek DW, Chiel HJ (2007) The kinematics of multifunctionality: comparisons of biting and swallowing in Aplysia californica. J Exp Biol 210:238–260

    Article  PubMed  Google Scholar 

  • Newcomb JM (2008) Melibe. Scholarpedia 3:3965

    Article  Google Scholar 

  • Newcomb JM, Katz PS (2007) Homologues of serotonergic central pattern generator neurons in related nudibranch molluscs with divergent behaviors. J Comp Physiol A 193:425–443

    Article  CAS  Google Scholar 

  • Newcomb JM, Katz PS (2009) Different functions for homologous serotonergic interneurons and serotonin in species-specific rhythmic behaviours. Proc R Soc B 276:99–108

    Article  PubMed Central  PubMed  Google Scholar 

  • Newcomb JM, Watson WH (2002) Modulation of swimming in the gastropod Melibe leonina by nitric oxide. J Exp Biol 205:397–403

    CAS  PubMed  Google Scholar 

  • Newcomb JM, Sakurai A, Lillvis JL, Gunaratne CA, Katz PS (2012) Homology and homoplasy of swimming behaviors and neural circuits in Nudipleura molluscs. Proc Natl Acad Sci USA 109(Suppl 1):10669–10676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norekian TP (1995) Prey capture phase of feeding behavior in the pteropod mollusc, Clione limacina: neuronal mechanisms. J Comp Physiol A 177:41–53

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (2012) Evolution of centralized nervous systems: two schools of evolutionary thought. Proc Natl Acad Sci USA 109(Suppl 1):10626–10633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nowotny T, Zhigulin VP, Selverston AI, Abarbanel HD, Rabinovich MI (2003) Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J Neurosci 23:9776–9785

    CAS  PubMed  Google Scholar 

  • Olivera BM (1999) Conus venom peptides: correlating chemistry and behavior. J Comp Physiol A Sens Neural Behav Physiol 185:353–359

    Article  CAS  Google Scholar 

  • Olivera BM, Watkins M, Bandyopadhyay P, Imperial JS, de la Cotera EP, Aguilar MB, Vera EL, Concepcion GP, Lluisma A (2012) Adaptive radiation of venomous marine snail lineages and the accelerated evolution of venom peptide genes. Ann N Y Acad Sci 1267:61–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, New York

    Book  Google Scholar 

  • Popescu IR, Frost WN (2002) Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea. J Neurosci 22:1985–1993

    CAS  PubMed  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Puillandre N, Bouchet P, Duda TF, Kauferstein S, Kohn AJ, Olivera BM, Watkins M, Meyer C (2014) Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol 78:290–303

    Article  CAS  PubMed  Google Scholar 

  • Sakurai A, Katz PS (2009) Functional recovery after lesion of a central pattern generator. J Neurosci 29:13115–13125

    Article  CAS  PubMed  Google Scholar 

  • Sakurai A, Darghouth NR, Butera RJ, Katz PS (2006) Serotonergic enhancement of a 4-AP-sensitive current mediates the synaptic depression phase of spike timing-dependent neuromodulation. J Neurosci 26:2010–2021

    Article  CAS  PubMed  Google Scholar 

  • Sakurai A, Newcomb JM, Lillvis JL, Katz PS (2011) Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors. Curr Biol 21:1036–1043

    Article  CAS  PubMed  Google Scholar 

  • Sakurai A, Gunaratne CA, Katz PS (2014a) Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusc Melibe leonina. J Neurophysiol 112(6):1317–1328

    Article  PubMed  Google Scholar 

  • Sakurai A, Tamvacakis AN, Katz PS (2014b) Hidden synaptic differences in a neural circuit underlie differential behavioral susceptibility to a neural injury. eLife. doi:10.7554/eLife.02598

    PubMed Central  PubMed  Google Scholar 

  • Selverston A (1999) General principles of rhythmic motor pattern generation derived from invertebrate CPGs. In: Binder MD (ed) Peripheral and spinal mechanisms in the neural control of movement, Progress in Brain Research, vol 123. Elsevier, Amsterdam, pp 247–257

  • Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–995

    CAS  PubMed  Google Scholar 

  • Sieling F, Bedecarrats A, Simmers J, Prinz AA, Nargeot R (2014) Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior. Curr Biol 24:941–950

    Article  CAS  PubMed  Google Scholar 

  • Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SC, Rouse GW, Giribet G, Dunn CW (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480:364–367

    Article  CAS  PubMed  Google Scholar 

  • Susswein AJ, Achituv Y, Cappell MS, Bennett MV (1987) Pharyngeal movements during feeding sequences of Navanax inermis (Gastropoda: Opisthobranchia) in successive stages of dissection. J Exp Biol 128:323–333

    CAS  PubMed  Google Scholar 

  • Susswein AJ, Hurwitz I, Thorne R, Byrne JH, Baxter DA (2002) Mechanisms underlying fictive feeding in Aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron. J Neurophysiol 87:2307–2323

    PubMed  Google Scholar 

  • Taylor BE, Lukowiak K (2000) The respiratory central pattern generator of Lymnaea: a model, measured and malleable. Respir Physiol 122:197–207

    Article  CAS  PubMed  Google Scholar 

  • Thompson TE, Slinn DJ (1959) On the biology of the opisthobranch Pleurobranchus membranaceus. J Mar Biol Ass UK 38:507–524

    Article  Google Scholar 

  • Thompson S, Watson WH (2005) Central pattern generator for swimming in Melibe. J Exp Biol 208:1347–1361

    Article  PubMed  Google Scholar 

  • Trimarchi J, Watson WH (1992) The role of the Melibe buccal ganglia in feeding-behavior. Mar Behav Physiol 19:195–209

    Article  Google Scholar 

  • von der Porten K, Parsons DW, Rothman BS, Pinsker H (1982) Swimming in Aplysia brasiliana: analysis of behavior and neuronal pathways. Behav Neural Biol 36:1–23

    Article  PubMed  Google Scholar 

  • Waegele H, Klussmann-Kolb A, Verbeek E, Schrõdl M (2014) Flashback and foreshadowing—a review of the taxon Opisthobranchia. Org Divers Evol 14:133–149

    Article  Google Scholar 

  • Watson WH, Newcomb JM, Thompson S (2002) Neural correlates of swimming behavior in Melibe leonina. Biol Bull 203:152–160

    Article  PubMed  Google Scholar 

  • Wentzell MM, Martinez-Rubio C, Miller MW, Murphy AD (2009) Comparative neurobiology of feeding in the opisthobranch sea slug, Aplysia, and the pulmonate snail, Helisoma: evolutionary considerations. Brain Behav Evol 74:219–230

    Article  PubMed Central  PubMed  Google Scholar 

  • Willows AO (1967) Behavioral acts elicited by stimulation of single, identifiable brain cells. Science 157:570–574

    Article  CAS  PubMed  Google Scholar 

  • Willows AOD (2001) Costs and benefits of opisthobranch swimming and neurobehavioral mechanisms. Am Zool 41:943–951

    Article  Google Scholar 

  • Woolley SC, Kao MH (2014) Variability in action: contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control. Neuroscience. doi:10.1016/j.neuroscience.2014.10.010 [Epub ahead of print]

  • Yeoman MS, Pieneman AW, Ferguson GP, Ter Maat A, Benjamin PR (1994) Modulatory role for the serotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. I. Fine wire recording in the intact animal and pharmacology. J Neurophysiol 72:1357–1371

    CAS  PubMed  Google Scholar 

  • Ziv I, Lustig C, Ben Zion M, Susswein AJ (1991) Daily variation of multiple behaviors in Aplysia fasciata: integration of feeding, reproduction, and locomotion. Behav Neural Biol 55:86–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support was provided by grants from the National Science Foundation IOS-1120950 and the March of Dimes Foundation 6-FY14-441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Katz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurai, A., Katz, P.S. Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A 201, 829–839 (2015). https://doi.org/10.1007/s00359-015-1007-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1007-6

Keywords

Navigation