Skip to main content

Electric Organs and Their Control

  • Chapter
Electroreception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albe-Fessard D (1954) Novelle étude des latences spinales dans le dispositif de commande des organs électriques chez Electrophorus electricus. Anais Acad Brasil Cienc 26:187–192.

    Google Scholar 

  • Albe-Fessard D, Buser P (1950) Etude de l’interaction électrique entre deux fragments d’organe de Torpille (Torpedo marmorata). J Physiol (Paris) 42:528–529.

    CAS  Google Scholar 

  • Barham E, Huckabay W, Gowdy R, Burns B (1969) Microvolt electric signals from fishes and the environment. Science 164:965–968.

    PubMed  CAS  Google Scholar 

  • Baron VD, Morshnev KS, Olshansky VM, Orlov AA (1994) Electric organ discharges of two species of African catfish (Synodontis) during social behaviour. Anim Behav 48:1472–1475.

    Google Scholar 

  • Bass AH (1986) Electric organs revisited: Evolution of a vertebrate communication and orientation organ. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 13–70.

    Google Scholar 

  • Bass AH, Hopkins CD (1983) Hormonal control of sexual differentiation: changes in electric organ discharge waveform. Science 220:971–974.

    PubMed  CAS  Google Scholar 

  • Bass AH, Volman SF (1987) From behavior to membranes: testosterone-induced changes in action potential duration in electric organs. Proc Nat Acad Sci USA 84:9295–9298.

    PubMed  CAS  Google Scholar 

  • Bastian J (1986) Electrolocation Behavior, Anatomy and Physiology. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 577–612.

    Google Scholar 

  • Bauer R (1979) Electric organ discharge (EOD) and prey capture behavior in the electric eel, Electrophorus electricus. Behav Ecol Sociobiol 3:311–319.

    Google Scholar 

  • Belbenoit P (1986) Fine analysis of predatory and defensive motor events in Torpedo marmorata (Pisces). J Exp Biol 121:197–226.

    Google Scholar 

  • Belbenoit P, Moller P, Serrier J, Push S (1979) Ethological observations on the electric organ discharge behavior of the electric catfish, Malapterurus electricus (Pisces). Behav Ecol Sociobiol 4:321–330.

    Google Scholar 

  • Bell CC, Bradbury J, Russell CJ (1976) Electric organ of a mormyrid as a current and voltage source. J Comp Physiol 110:65–88.

    Google Scholar 

  • Bell CC, Libouban S, Szabo T (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol 216:327–338.

    PubMed  CAS  Google Scholar 

  • Bennett MVL (1961) Modes of operation of electric organs. Ann NY Acad Sci 94:458–509.

    Google Scholar 

  • Bennett MVL (1968) Neural control of electric organs. In: Ingle D (ed), The Central Nervous System and Fish Behavior. Chicago: University of Chicago Press, pp. 147–169.

    Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds), Fish Physiology. London: Academic Press, pp. 347–491.

    Google Scholar 

  • Bennett MVL, Pappas G, Gimenez M, Nakajima Y (1967a) Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotiform fish. J Neurophysiol 30:236–300.

    PubMed  CAS  Google Scholar 

  • Bennett MVL, Pappas G, Aljure E, Nakajima Y (1967b) Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J Neurophysiol 30:180–208.

    PubMed  CAS  Google Scholar 

  • Bratton BO, Ayers LJ (1987) Observations on the electric organ discharge of two skate species (Chondrichthyes: Rajidae) and its relationship to behaviour. Environ Biol Fish 20:241–254.

    Google Scholar 

  • Budelli R, Caputi AA, Gomez L, Rother D, Grant K (2002) The electric image in Gnathonemus petersii. J Physiol Paris 96:421–429.

    PubMed  CAS  Google Scholar 

  • Bullock TH (1969) Species differences in effect of electroreceptor input on electric organ pacemakers and other aspects of behavior in electric fish. Brain Behav Evol 2:85–118.

    Google Scholar 

  • Bullock TH, Heiligenberg W, eds (1986) Electroreception. New York: John Wiley & Sons.

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46.

    Google Scholar 

  • Capurro A, Macadar O, Perrone R, Pakdaman K (1998) Computational model of the jamming avoidance response in the electric fish Gymnotus carapo. Biosystems 48: 21–27.

    PubMed  CAS  Google Scholar 

  • Caputi AA (1999) The electric organ discharge of pulse gymnotiforms: the transformation of a simple impulse into a complex spatiotemporal electromotor pattern. J Exp Biol 202:1229–1241.

    PubMed  Google Scholar 

  • Caputi AA (2004) Contributions of electric fish to the understanding sensory processing by reafferent systems J Physiol (Paris) 98:81–97.

    Google Scholar 

  • Caputi A, Aguilera P (1996) A field potential analysis of the electromotor system in Gymnotus carapo. J Comp Physiol A 179:827–835.

    Google Scholar 

  • Caputi A, Budelli R (1995) The electric image in weakly electric fish: I. A data-based model of waveform generation in Gymnotus carapo. J Comput Neurosci 2:131–147.

    PubMed  CAS  Google Scholar 

  • Caputi A, Trujillo-Cenoz O (1994) The spinal cord of Gymnotus carapo: the electrom-otoneurons and their projection patterns. Brain Behav Evol 44:166–174.

    PubMed  CAS  Google Scholar 

  • Caputi A, Macadar O, Trujillo-Cenoz O (1989) Waveform generation in Gymnotus carapo. III. Analysis of the fish body as an electric source. J Comp Physiol A 165:361–370.

    Google Scholar 

  • Caputi A, Silva A, Macadar O (1998) The effect of environmental variables on waveform generation in Brachyhypopomus pinnicaudatus. Brain Behav Evol 52:148–158.

    PubMed  CAS  Google Scholar 

  • Caputi AA, Castelló ME, Aguilera P, Trujillo-Cenóz O ((2002) ElElectrolocation and electrocommunication in pulse gymnotiforms: signal carriers, pre-receptor mechanisms and the electrosensory mosaic. J Physiol Paris 96:493–505.

    PubMed  Google Scholar 

  • Caputi AA, Aguilera P Castelló ME (2003) Probability and amplitude of novelty responses as a function of the change in contrast of the reafferent image in G. carapo J Exp Biol 206:999–1010.

    PubMed  CAS  Google Scholar 

  • Carlson BA (2002a) Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish. J Physiol (Paris) 96:405–419.

    Google Scholar 

  • Carlson BA (2002b) Neuroanatomy of the mormyrid electromotor control system. J Comp Neurol 454:440–455.

    PubMed  Google Scholar 

  • Carlson BA (2003) Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius. J Neurosci 23:10128–10136.

    PubMed  CAS  Google Scholar 

  • Carlson BA, Hopkins CD (2004a) Stereotyped temporal patterns in electrical communication. Anim Behav 68:867–878.

    Google Scholar 

  • Carlson BA, Hopkins CD (2004b) Central control of electric signaling behavior in the mormyrid Brienomyrus brachyistius: segregation of behavior-specific inputs and the role of modifiable recurrent inhibition. J Exp Biol 207:1073–1084.

    PubMed  CAS  Google Scholar 

  • Carlson BA, Hopkins CD, Thomas P (2000) Androgen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish. Horm Behav 38:177–186.

    PubMed  CAS  Google Scholar 

  • Castello ME, Aguilera PA, Trujillo-Cenoz O, Caputi AA (2000) Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types. J Exp Biol 203:3279–3287.

    PubMed  CAS  Google Scholar 

  • Coates CW, Altamirano M, Grundfest H (1954) Activity in electrogenic organs of knife-fishes. Science 120:845–846.

    Google Scholar 

  • Cox R, Coates C (1938) Electrical characteristics of the electric tissue of the electric eel Electrophorus electricus (Linnaeus). Zoologica 23:203–212.

    Google Scholar 

  • Curti S, Falconi A, Morales FR, Borde M (1999) Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotiform fish. J Neurosci 19:9133–9140.

    PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.

    Google Scholar 

  • DeLuca CJ, Erim Z (1994) Common drive of motor units in regulation of muscle force. Trends Neurosci 17:299–305.

    CAS  Google Scholar 

  • Descartes R (1637) Les passions de l’âme.

    Google Scholar 

  • Dunlap KD, Smith GT, Yekta A ((2000) Temperature dependence of electrocommunication signals and their underlying neural rhythms in the weakly electric fish, Apteronotus leptorhynchus. Brain Behav Evol 55:152–162.

    PubMed  CAS  Google Scholar 

  • Dye JC, Meyer JH (1986) Central control of the electric organ discharge in weakly electric fish. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 71–102.

    Google Scholar 

  • Elekes K, Szabo T (1985) The mormyriforms brainstem. III. Ultrastructure and synaptic organization of the medullary “pacemaker” nucleus. Neuroscience 15:431–443.

    PubMed  CAS  Google Scholar 

  • Ellis DB, Szabo T (1980) Identification of different cell types in the command (pacemaker) nucleus of several gymnotiform species by retrograde transport of horseradish-peroxidase. Neuroscience 5:1917–1929.

    PubMed  CAS  Google Scholar 

  • Falconi A, Borde M, Hernandez-Cruz A, Morales FR (1995) Mauthner cell-initiated abrupt increase of the electric organ discharge in the weakly electric fish Gymnotus carapo. J Comp Physiol A 176:679–689.

    Google Scholar 

  • Few WP, Zakon HH (2001) Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency. Horm Behav 40:434–442.

    PubMed  CAS  Google Scholar 

  • Grant K, Bell CC, Clausse S, Ravaille M (1986) Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyriforms fish. J Comp Neurol 245:514–530.

    PubMed  CAS  Google Scholar 

  • Grant K, von der Emde G, Gomez-Sena L, Mohr C (1999) Neural command of electromotor output in mormyrids. J Exp Biol 202:1399–1407.

    PubMed  Google Scholar 

  • Hagedorn M (1986) The ecology, courtship, and mating of gymnotiform electric fish. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 497–525.

    Google Scholar 

  • Hagedorn M, Carr C (1985) Single electrocytes produce a sexually dimorphic signal in the South American electric fish Hypopomus occidentalis (Gymnotiformes Hypopomidae). J Comp Physiol A 156:511–524.

    Google Scholar 

  • Hagedorn M, Womble M, Finger TE (1990) Synodontid catfish: a new group of weakly electric fish. Brain Behav Evol 35:268–277.

    PubMed  CAS  Google Scholar 

  • Heiligenberg WF (1991) Neural Nets in Electric Fish. Cambridge: MIT Press.

    Google Scholar 

  • Hennemann E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1346.

    Google Scholar 

  • Hille B (2001) Ion Channels of Excitable Membranes, 3rd ed. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Hoffer JA, Caputi AA, Pose IE. (1992) Activity of muscle proprioceptors in cat posture and locomotion:relation to EMG, tendon force and the movement of fibers and aponeurotic segments. In: Jami L, Pierrot-Deseilligny, E, Zytnicki D. (eds), Muscle Afferents and Spinal Control of Movement. Oxford: Pergamon Press.

    Google Scholar 

  • Hopkins CD (1972) Sex differences in electric signaling in an electric fish. Science 176: 1035–1037.

    Google Scholar 

  • Hopkins CD (1986) Behavior of Mormyridae. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 527–576.

    Google Scholar 

  • Hopkins CD (1995) Convergent designs for electrogenesis and electroreception. Curr Opin Neurobiol 5:769–777.

    PubMed  CAS  Google Scholar 

  • Hopkins CD (1999) Design features for electric communication. J Exp Biol 202:1217–1228.

    PubMed  CAS  Google Scholar 

  • Hopkins CD, Bass AH (1981) Temporal coding of species recognition signals in an electric fish. Science 212:85–87.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed), Handbook of Sensory Physiology. Heidelberg: Springer-Verlag, pp. 147–200.

    Google Scholar 

  • Kalmijn AJ (1987) Detection of weak electric fields. In: Atema J, Fay R, Popper A, Tavolga W (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 151–186.

    Google Scholar 

  • Kawasaki M (1994) The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating. J Comp Physiol A 174:133–144.

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Heiligenberg W (1989) Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus. J Comp Physiol A 165:731–741.

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131.

    PubMed  CAS  Google Scholar 

  • Kellaway P (1946) The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull Hist Med 20:112–137.

    Google Scholar 

  • Keynes RD, Bennett MVL, Grundfest H (1961) Studies on the morphology and electrophysiology of electric organs. II. Electrophysiology of the electric organ of Melapterurus electricus. In: Chagas C, Paes de Carvalho A (eds), Bioelectrogenesis. Amsterdam: Elsevier, pp. 102–112.

    Google Scholar 

  • Kleerokoper H, Sibakin K (1956) An investigation of the electrical’ spike’ potentials produced by the sea lamprey (Petromyzon marinus) in the water surrounding the head region. J Fish Res Bd Can 13:175–383.

    Google Scholar 

  • Kramer B (1990) Electrocommunication in Teleost Fishes: Behavior and Experiments. New York: Springer-Verlag.

    Google Scholar 

  • Lashley KS (1917) The accuracy of movement in abscence of excitation from the moving organ. Am J Physiol 43:169–194.

    Google Scholar 

  • Lemon R (1988) The output map of the motor cortex. Trends Neurosci 11:501–506.

    PubMed  CAS  Google Scholar 

  • Lissman HW (1951) Continuous electrical signals from the tail of a fish, Gymnarchus niloticus. Nature 167:201–202.

    Google Scholar 

  • Lissman HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191.

    Google Scholar 

  • Lissman HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:451–486.

    Google Scholar 

  • Lorenzo D, Sierra F, Silva A, Macadar O (1990) Spinal mechanisms of electric organ discharge synchronization in Gymnotus carapo. J Comp Physiol A 167:447–452.

    Google Scholar 

  • Lowe CG, Bray RN, Nelson DR (1994) Feeding and associated electrical behavior of the Pacific electric ray Torpedo californica in the field. Mar Biol 120:161–169.

    Google Scholar 

  • Macadar O (1993) Motor control of waveform generation in Gymnotus carapo. J Comp Physiol A 173:728–729.

    Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996.

    PubMed  CAS  Google Scholar 

  • Marder E, Calabrese R (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717.

    PubMed  CAS  Google Scholar 

  • McGregor PK, Westby GWM (1992) Discrimination of individually characteristic electric organ discharges by a weakly electric fish. Anim Behav 43:977–986.

    Google Scholar 

  • Metzner W (1999) Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J Exp Biol 202:1365–1375.

    PubMed  CAS  Google Scholar 

  • Moller P (1995) Electric Fishes: History and Behavior. New York: Chapman and Hall.

    Google Scholar 

  • Moortgat KT, Bullock TH, Sejnowski TJ (2000) Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences. J Neurophysiol 83:971–983.

    PubMed  CAS  Google Scholar 

  • Niso R, Serrier J, Grant K. (1989) Mesencephalic control of the bulbar electromotor network in the mormyriforms Gnathonemus petersii. Eur J Neurosci (Suppl) 2:176.

    Google Scholar 

  • Otte D (1974) Effects and functions in the evolution of signaling systems. Annu Rev Ecol Syst 5:385–417.

    Google Scholar 

  • Pickens PE, McFarland WN (1964) Electric discharge and associated behaviour in the stargazer. Anim Behav 12:363–367.

    Google Scholar 

  • Post N, von der Emde G (1999) The “novelty response” in an electric fish: response properties and habituation. Physiol Behav 68:115–128.

    PubMed  CAS  Google Scholar 

  • Rankin C, Moller P (1986) Social behavior of the African electric catfish, Melapterurus electricus, during intra-and interspecific encounters. Ethology 73:177–190.

    Google Scholar 

  • Russell CJ, Myers JP, Bell CC (1974) The echo response in Gnathonemus petersii (Mormyridae). J Comp Physiol 92:181–200.

    Google Scholar 

  • Schuster S (2000) Changes in electric organ discharge after pausing the electromotor system of Gymnotus carapo. J Exp Biol 203 (Pt 9):1433–1446.

    PubMed  CAS  Google Scholar 

  • Silva A, Quintana L, Ardanaz JL, Macadar O (2002) Environmental and hormonal influences upon EOD waveform in gymnotiform pulse fish. J Physiol Paris 96:473–484.

    PubMed  CAS  Google Scholar 

  • Smith GT (1999) Ionic currents that contribute to a sexually dimorphic communication signal in weakly electric fish. J Comp Physiol A 185:379–387.

    PubMed  CAS  Google Scholar 

  • Smith GT, Lu Y, Zakon HH (2000) Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish. J Comp Neurol 423:427–439.

    PubMed  CAS  Google Scholar 

  • Stoddard PK, Markham MR, Salazar VL (2003) Serotonin modulates the electric waveform of the gymnotiform electric fish Brachyhypopomus pinnicaudatus. J Exp Biol 206:1353–1362.

    PubMed  CAS  Google Scholar 

  • Szabo T, Enger P (1964) Pacemaker activity of the medullary nucleus controlling electric organs in high frequency gymnotiform fish. Z Vgl Physiol 49:285–300.

    Google Scholar 

  • Teyssedre C, Boudinot M (1987) Rhythmicity as an intrinsic property of the mormyrids electromotor command system. Physiol Behav 41:201–207.

    PubMed  CAS  Google Scholar 

  • Tricas TC, Michael SW, Sisneros JA (1995) Electrosensory optimization to conspecific phasic signals for mating. Neurosci Lett 202:129–132.

    PubMed  CAS  Google Scholar 

  • Trujillo-Cenoz O, Echague JA, Macadar O (1984) Innervation pattern and electric organ discharge waveform in Gymnotus carapo (Teleostei Gymnotiformes). J. Neurobiol 15:273–282.

    PubMed  CAS  Google Scholar 

  • Trujillo-Cenoz O, Echague JA, Bertolotto C, Lorenzo D (1986) Some aspects of the structural organization of the spinal cord of Gymnotus carapo (Teleostei Gymnotiformes) I. The electromotor neurons. J Ultrastruct Mol Struct Res 97:130–143.

    PubMed  CAS  Google Scholar 

  • von der Emde G (1992) Electrolocation of capacitive objects in four species of pulsetype weakly electric fish. 2. Electric signaling behavior. Ethology 92:177–192.

    Google Scholar 

  • von der Emde G, Sena LG, Niso R, Grant K (2000) The midbrain precommand nucleus of the mormyriforms electromotor network. J Neurosci 20:5483–5495.

    PubMed  Google Scholar 

  • Zakon HH (1993) Weakly electric fish as model systems for studying long-term steroid action on neural circuits. Brain Behav Evol 42:242–251.

    PubMed  CAS  Google Scholar 

  • Zupanc GK (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202 (Pt 10):1435–1446.

    PubMed  CAS  Google Scholar 

  • Zupanc GKH, Maler L (1997) Neuronal control of behavioral plasticity: the prepacemaker nucleus of weakly electric gymnotiform fish. J Comp Physiol A 180:99–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Caputi, A.A., Carlson, B.A., Macadar, O. (2005). Electric Organs and Their Control. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. Springer, New York, NY . https://doi.org/10.1007/0-387-28275-0_14

Download citation

Publish with us

Policies and ethics